
Detailed New Features Of Firebird 5
by D.Simonov, 2024

Table of Contents
Preface: Firebird 5.0 - A Game-Changing Release in the World of Relational Databases 2

SQL Query Optimization: Faster Than Ever. 2

Scalability: Growing with Your Data . 2

Parallel Execution: Harnessing the Power of Modern Hardware . 3

Prepared Statement Cache. 3

Improved Compression of Records . 3

SQL Query Profiling: Shining a Light on Performance Of Complex Stored Procedures 3

Wrapping Up and More Materials . 4

Practical Migration Guide To Firebird 5. 4

And, let’s start! . 4

1. New ODS and upgrade without backup-restore . 6

2. Improving the data compression algorithm . 7

3. Cache of prepared (compiled) statements . 15

3.1. A little theory . 15

4. Support for bidirectional cursors in the network protocol . 17

5. Tracing the COMPILE event . 18

6. Per-table statistics in isql . 20

7. Parallel execution of maintenance tasks . 21

7.1. Parallel execution of tasks in the Firebird kernel . 21

7.1.1. Practical recommendations for parameters. 22

7.1.2. Multi-threaded index creation or rebuild. 22

7.2. Parallel execution of maintenance tasks by Firebird tools . 23

7.2.1. Parallelism when performing backups using the gbak . 23

7.2.2. Parallelism when performing restore using the gbak . 24

7.2.3. Parallel manual sweep using the gfix tool . 25

7.2.4. Parallel icu update using the gfix utility. 27

8. Improvements in Optimizer . 28

8.1. Cost estimation of HASH vs NESTED LOOP JOIN . 28

8.2. Cost estimation of HASH vs MERGE JOIN . 30

8.3. Transforming OUTER JOIN into INNER JOIN . 31

8.4. Converting subqueries to ANY/SOME/IN/EXISTS in semi-join . 34

8.5. Preliminary evaluation of invariant predicates . 47

8.6. Faster IN with list of constants . 50

8.7. Optimizer strategy ALL ROWS vs FIRST ROWS . 53

8.8. Improved plan output . 55

8.9. How to get stored procedure plans . 58

9. New features in SQL language . 60

9.1. Support for WHEN NOT MATCHED BY SOURCE clause in MERGE statement . 60

9.1.1. WHEN MATCHED . 61
9.1.2. WHEN NOT MATCHED [BY TARGET] . 61

9.1.3. WHEN NOT MATCHED BY SOURCE . 61

9.1.4. Example of using MERGE with clause WHEN NOT MATCHED BY SOURCE . 62

9.2. Clause SKIP LOCKED . 62

9.3. Support for returning multiple records by operators with clause RETURNING 64

9.4. Partial indices . 65

9.5. Functions UNICODE_CHAR and UNICODE_VAL. 71

9.6. Query expressions in parentheses . 71

9.7. Improved Literals . 72

9.7.1. Full syntax of string literals . 72

9.7.2. Complete syntax for binary literals . 73

9.8. Improved predicate IN . 73

9.9. Package RDB$BLOB_UTIL . 74

9.9.1. Using the function RDB$BLOB_UTIL.NEW_BLOB . 74

9.9.2. Reading BLOBs in chunks . 75

10. Why SKIP LOCKED was developed? . 78

10.1. Preparing the Database. 78

10.2. Script simulating a job queue . 79

10.3. Clause SKIP LOCKED . 85

10.4. Job queue without conflicts . 86

10.5. Next steps . 87

10.6. Summary . 89

11. SQL and PSQL Profiling . 90

11.1. Starting a Profiling Session . 91

11.2. Pausing a Profiling Session . 92

11.3. Resuming a Profiling Session . 92

11.4. Finishing a Profiling Session . 93

11.5. Canceling a Profiling Session. 93

11.6. Resuming a Profiling Session . 93

11.7. Finishing a Profiling Session . 94

11.8. Canceling a Profiling Session. 94

11.9. Discarding Profiling Sessions . 94

11.10. Flushing Profiling Session Statistics to Snapshot Tables . 94

11.11. Setting the Statistics Flush Interval . 95

11.12. Snapshot Tables . 95

11.12.1. Table PLG$PROF_SESSIONS . 95

11.12.2. Table PLG$PROF_STATEMENTS . 96

11.12.3. Table PLG$PROF_REQUESTS . 96

11.12.4. Table PLG$PROF_CURSORS . 97

11.12.5. Table PLG$PROF_RECORD_SOURCES . 97

11.12.6. Table PLG$PROF_RECORD_SOURCE_STATS . 98
11.12.7. Table PLG$PROF_PSQL_STATS . 99

11.13. Auxiliary Views. 99

11.14. Profiler Launch Modes . 100

11.14.1. Option DETAILED_REQUESTS . 100

11.14.2. Running the profiler in a remote connection . 107

11.15. Examples of using the profiler to find "bottlenecks". 109

12. Conclusion . 119

(c) Denis Simonov, edited and adjusted by Alexey Kovyazin

This material is sponsored and created with the sponsorship and support of IBSurgeon
https://www.ib-aid.com, vendor of HQbird (advanced distribution of Firebird) and supplier of
performance optimization, migration and technical support services for Firebird. The material is
licensed under Public Documentation License https://www.firebirdsql.org/file/documentation/html/
en/licenses/pdl/public-documentation-license.html

Preface

1

https://www.ib-aid.com
https://www.firebirdsql.org/file/documentation/html/en/licenses/pdl/public-documentation-license.html
https://www.firebirdsql.org/file/documentation/html/en/licenses/pdl/public-documentation-license.html

Preface: Firebird 5.0 - A Game-Changing
Release in the World of Relational Databases
Hey there, fellow Firebirders! If you’re scrolling through it on your favorite e-reader, I’m guessing
you’re as excited about Firebird 5 as I am. And let me tell you, you’re in for a treat.

Now, I know what some of you might be thinking: "Another Firebird update? What’s the big deal?"
Well, let me assure you, Firebird 5 is not just another run-of-the-mill update. It’s a game-changer, a
quantum leap forward in the world of relational databases. And in this book, we’re going to dive
deep into all the amazing new features that make Firebird 5 stand out from the crowd.

But before we get into the nitty-gritty, let’s take a step back and consider why this release is so
important. In today’s fast-paced digital world, data is king. Businesses of all sizes are collecting and
processing more data than ever before, and they need database systems that can keep up with this
ever-growing demand. That’s where Firebird 5 comes in.

This new version isn’t just an incremental improvement – it’s a major overhaul that addresses some
of the most pressing needs in modern database management. From turbocharging query
performance to scaling up to handle massive datasets, Firebird 5 is designed to meet the challenges
of today’s data-driven world head-on.

So, what can you expect to learn about in this book? Let’s take a quick tour of some of the headline
features:

SQL Query Optimization: Faster Than Ever
One of the standout features of Firebird 5 is its dramatically improved SQL query optimization. I
know that "query optimization" might not sound like the most exciting topic in the world, but trust
me, this is where the rubber meets the road in database performance.

The team behind Firebird has completely revamped the query optimizer, implementing many new
algorithms and techniques to improve performance of your queries. In this book, we’ll dive deep
into how the new optimizer works, exploring the magic behind the scenes that makes your queries
fly. You’ll learn how to take full advantage of these optimizations, and we’ll look at real-world
examples that showcase just how much of a difference this can make to your applications.

Scalability: Growing with Your Data
Let’s face it: data growth is exploding. What seemed like a large dataset a few years ago is now
considered small potatoes. That’s why scalability is such a crucial feature in modern database
systems, and it’s an area where Firebird 5 really shines.

The new version introduces a host of features designed to help Firebird scale up to handle truly
massive datasets. We’re talking about improvements to indexing, better memory management, and
smarter data distribution techniques. Whether you’re dealing with millions of records or billions,
Firebird 5 has got you covered.

Preface: Firebird 5.0 - A Game-Changing Release in the World of Relational Databases

2

In the coming chapters, we’ll explore these scalability features in depth.

Parallel Execution: Harnessing the Power of Modern
Hardware
Remember when computers only had one core? Yeah, me neither. These days, even your
smartphone probably has multiple cores, and server-grade hardware can have dozens or even
hundreds of cores. Firebird 5 is designed to take full advantage of all this computing power with its
new parallel execution features to execute backup, restore, sweep, and index creation much faster.

We’ll dedicate a whole chapter to parallel execution features, looking at how it works under the
hood and how you can structure your queries and database schema to make the most of this
powerful feature. Also, I would recommend to read the detailed article "Parallel reading of data in
Firebird" and take a look on sample implementation of parallel reading in the test application
FBCSVExport.

Prepared Statement Cache
Here’s a feature that might not sound sexy, but trust me, it’s a game-changer for many applications.
Firebird 5 introduces a cache for compiled prepared statements, and it’s going to make a world of
difference for applications that run the same queries over and over again.

Think about it: how many times does your application run essentially the same query, just with
different parameters? With previous versions, Firebird would have to compile that query from
scratch each time. But with the new prepared statement cache, Firebird can keep the compiled
version in memory, ready to go at a moment’s notice.

The performance implications of this are huge, especially for applications that handle lots of small,
frequent transactions. We’ll look at how to make the most of this feature in your own applications,
and explore some of the under-the-hood optimizations that make it possible.

Improved Compression of Records
In an ideal world, we’d all have infinite storage and blazing fast I/O. But in the real world, storage is
often at a premium, and I/O can be a major bottleneck. That’s why Firebird 5’s improved
compression features are such a big deal.

The new version introduces more efficient compression algorithms that can significantly reduce
the size of your database on disk, without sacrificing query performance. In fact, in many cases, the
reduced I/O from better compression actually improves overall performance!

SQL Query Profiling: Shining a Light on Performance Of
Complex Stored Procedures
Last but certainly not least, let’s talk about Firebird 5’s new SQL query profiling features. As the old
saying goes, you can’t improve what you can’t measure, and that’s especially true when it comes to

Preface: Firebird 5.0 - A Game-Changing Release in the World of Relational Databases

3

https://ib-aid.com/articles/parallel-reading-of-data-in-firebird
https://ib-aid.com/articles/parallel-reading-of-data-in-firebird
https://github.com/IBSurgeon/FBCSVExport.git

database performance.

The new profiling tools in Firebird 5 give you unprecedented visibility into how your stored
procedures are executing. You can see exactly where time is being spent, which parts are causing
the most I/O, and where you might be missing opportunities for optimization.

We’ll spend a good chunk of this book exploring these profiling tools in depth. You’ll learn how to
use them to identify performance bottlenecks in your queries, how to interpret the results, and how
to use that information to optimize your database schema and queries for maximum performance.

Wrapping Up and More Materials
So there you have it – a whirlwind tour of some of the exciting new features in Firebird 5. But trust
me, we’ve only scratched the surface. In the chapters that follow, we’re going to dive deep into each
of these features and more, exploring how they work, how to use them effectively, and how they
can help you build faster, more scalable, and more efficient database applications.

Whether you’re a seasoned database administrator, a developer looking to get more out of your
data layer, or just someone who’s curious about the cutting edge of database technology, I promise
you’ll find something valuable in this book.

Firebird has always been known for its combination of power, flexibility, and ease of use. With
version 5, it’s taking all of those qualities to the next level. By the time you finish this book, you’ll
have all the knowledge you need to harness the full power of Firebird 5 in your own projects.

Practical Migration Guide To Firebird 5

After discovering the exciting features of Firebird 5, you’ll likely want to upgrade from your older
Firebird version. While the migration process is straightforward, it involves some essential steps
and potential pitfalls. To help you navigate this process, there’s a free Practical Migration Guide to
Firebird 5 available, offering a collection of migration solutions.

So buckle up, grab your favorite beverage, and let’s dive in. The world of high-performance,
scalable database management is waiting, and Firebird 5 is your ticket to ride. Let’s get started!

Alexey Kovyazin, President Of Firebird Foundation

And, let’s start!
In Firebird 5.0, Firebird Project had focus on performance improvements in various areas:

1. Optimizer improvements – SQLs runs faster due to better execution plans

2. Scalability in multi-user environments – Firebird can serve more concurrent connections and
queries in highly concurrent environments

3. Parallel backup, restore, sweep, index creation – up to 6-10x faster (depends on hardware)

4. Cache of compiled prepared statements – up to 25% of improvement for frequent queries

5. Improved compression of records – Firebird 5.0 works faster with large VARCHARs

Preface: Firebird 5.0 - A Game-Changing Release in the World of Relational Databases

4

https://ib-aid.com/download/docs/fb5migrationguide.html
https://ib-aid.com/download/docs/fb5migrationguide.html

6. Profiling plugin – identify bottlenecks and slow code inside complex stored procedures and
triggers

In addition, new features have appeared in the SQL and PSQL languages, but there are not many of
them in this version.

One highly anticipated feature is the introduction of a built-in SQL and PSQL profiling tool,
allowing database administrators and application developers to find bottlenecks.

Databases created in Firebird 5.0 have ODS (On-Disk Structure) version 13.1. Firebird 5.0 allows you
to work with databases with ODS 13.0 (created in Firebird 4.0), but some features will not be
available.

To make the transition to Firebird 5.0 easier, a new -upgrade switch has been added to the gfix
command line utility, which allows you to update a minor version of ODS without lengthy backup
and restore operations.

Below I will list the key improvements made in Firebird 5.0 and a brief description of them. A
detailed description of all changes can be found in Firebird 5.0 Release Notes.

Preface: Firebird 5.0 - A Game-Changing Release in the World of Relational Databases

5

https://firebirdsql.org/file/documentation/release_notes/html/en/5_0/rlsnotes50.html

Chapter 1. New ODS and upgrade without
backup-restore
The traditional way of updating ODS (On-Disk Structure) is to perform backup on the old version of
Firebird and restore on the new one. This is a rather lengthy process, especially on large databases.

However, in the case of updating a minor version of ODS (the number after the dot) backup/restore
is redundant (it is only necessary to add the missing system tables and fields, as well as some
packages). An example of such an update is updating ODS 13.0 (Firebird 4.0) to ODS 13.1 (Firebird
5.0), since the major version of ODS 13 remained the same.

Starting from Firebird 5.0, it became possible to update the minor version of ODS without the
lengthy backup and restore operations. For this, the gfix utility is used with the -upgrade switch.

Key points:

• The update must be performed manually using the command gfix -upgrade

• Exclusive access to the database is required, otherwise an error is issued.

• The system privilege USE_GFIX_UTILITY is required.

• The update is transactional, all changes are rolled back in case of an error.

• After the update, Firebird 4.0 can no longer open the database.

Usage:

gfix -upgrade <dbname> -user <username> -pass <password>

• This is a one-way modification, there is no way back. Therefore, before
updating, make a copy of the database (using nbackup b -0) to have a restore
point in case something goes wrong during the process.

• Updating ODS using gfix -upgrade does not change the data pages of user
tables, so the records will not be repacked using the new RLE compression
algorithm. But newly inserted records will be compressed using the improved
RLE.

Chapter 1. New ODS and upgrade without backup-restore

6

Chapter 2. Improving the data compression
algorithm
As you know, in Firebird, table records are stored on data pages (DP) in compressed form. This is
done so that as many records as possible can fit on one page, which in turn saves disk input-output.
Until Firebird 5.0, the classic Run Length Encoding (RLE) algorithm was used to compress records.

The classic RLE algorithm works as follows. A sequence of repeated characters is reduced to a
control byte, which determines the number of repetitions, followed by the actual repeated byte. If
the data cannot be compressed, the control byte indicates that "the next n bytes should be output
unchanged".

The control byte is used as follows:

• n > 0 [1 .. 127] - next n байт will be stored as is;

• n < 0 [-3 .. -128] - next byte will be repeated n times, but stored only once;

• n = 0 - end of data.

Mainly, RLE is effective for compressing trailing zeros in fields of type VARCHAR(N), which are not
fully filled or are equal to NULL. It is fast enough and does not load the processor much unlike
dictionary-based algorithms, such as LHZ, ZIP, GZ.

But the classic RLE algorithm has drawbacks:

• the maximum compression ratio is 64 times: the control byte can encode 128 repeating bytes
turning them into 2 bytes. Thus, 32000 identical bytes will take up 500 bytes. This problem has
worsened lately with the advent of the UTF8 encoding, where 4 bytes are allocated for each
character.

• in some cases, the compressed byte sequence may become longer than the uncompressed one, if
the data is not compressible.

• frequent alternation of short compressible and non-compressible sequences additionally loads
the processor, thus offsetting the benefit of saving disk input-output.

Therefore, in Firebird 5.0, an improved RLE compression algorithm (with a variable-length
counter) was developed. This algorithm is available only in databases with ODS 13.1 and higher.

Updating ODS using gfix -upgrade does not change the data pages of user tables, so
the records will not be repacked using the new RLE compression algorithm. But
newly inserted records will be compressed using the improved RLE.

The improved RLE algorithm works as follows. Two previously unused lengths -1 and -2 are used as
special markers for longer compressible sequences:

• {-1, two-byte counter, byte value} - repeating sequences of length from 128 bytes to 64 KB;

• {-2, four-byte counter, byte value} - repeating sequences of length more than 64 KB.

Chapter 2. Improving the data compression algorithm

7

Compressible sequences of length 3 bytes make no sense if they are located between two non-
compressible runs. Compressible sequences of length from 4 to 8 bytes are a borderline case, as
they are not very compressed, but increase the total number of runs, which negatively affects the
unpacking speed. Starting from Firebird 5.0 fragments shorter than 8 bytes are not compressed.

In addition, in Firebird 5.0 (ODS 13.1) there is another improvement: if as a result of applying the
RLE compression algorithm to the record, the byte sequence turned out to be longer (non-
compressible data), then the record will be written to the page as is and marked with a special flag
as uncompressed.

Now I will show by examples how the new RLE algorithm increases the performance of queries.

First of all, let’s note that compressing records is not a free operation in terms of resources (CPU
and memory). This can be easily verified by executing two queries:

SELECT COUNT(*) FROM BIG_TABLE;

SELECT COUNT(SOME_FIELD) FROM BIG_TABLE;

The first query does not use record unpacking, because we are not interested in their content (it is
enough to just count the number). The second query has to unpack each record to make sure that
the field SOME_FIELD is not NULL. First, let’s see how this is done in Firebird 4.0.

SELECT COUNT(*)
FROM WORD_DICTIONARY;

 COUNT
=====================
 4079052

Current memory = 2610594912
Delta memory = 0
Max memory = 2610680272
Elapsed time = 0.966 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 4318077

SELECT COUNT(CODE_DICTIONARY)
FROM WORD_DICTIONARY;

 COUNT
=====================
 4079052

Current memory = 2610596096

Chapter 2. Improving the data compression algorithm

8

Delta memory = 1184
Max memory = 2610685616
Elapsed time = 1.770 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 4318083

1.770 - 0.966 = 0.804 - 1.770 - 0.966 = 0.804 - most of this time is just the cost of unpacking
records.

Now let’s look at the same thing on Firebird 5.0.

SELECT COUNT(*)
FROM WORD_DICTIONARY;

 COUNT
=====================
 4079052

Current memory = 2577478608
Delta memory = 176
Max memory = 2577562528
Elapsed time = 0.877 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 4342385

SELECT COUNT(CODE_DICTIONARY)
FROM WORD_DICTIONARY;

 COUNT
=====================
 4079052

Current memory = 2577491280
Delta memory = 12672
Max memory = 2577577520
Elapsed time = 1.267 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 4342393

1.267 - 0.877 = 0.390 - This is twice less than in Firebird 4.0. Let’s take a look at the statistics of this
table in Firebird 4.0 and Firebird 5.0.

Chapter 2. Improving the data compression algorithm

9

Statistics in Firebird 4.0

WORD_DICTIONARY (265)
 Primary pointer page: 855, Index root page: 856
 Total formats: 1, used formats: 1
 Average record length: 191.83, total records: 4079052
 Average version length: 0.00, total versions: 0, max versions: 0
 Average fragment length: 0.00, total fragments: 0, max fragments: 0
 Average unpacked length: 670.00, compression ratio: 3.49
 Pointer pages: 19, data page slots: 59752
 Data pages: 59752, average fill: 87%
 Primary pages: 59752, secondary pages: 0, swept pages: 0
 Empty pages: 1, full pages: 59750
 Fill distribution:
 0 - 19% = 1
 20 - 39% = 0
 40 - 59% = 0
 60 - 79% = 1
 80 - 99% = 59750

Statistics in Firebird 5.0

WORD_DICTIONARY (265)
 Primary pointer page: 849, Index root page: 850
 Total formats: 1, used formats: 1
 Average record length: 215.83, total records: 4079052
 Average version length: 0.00, total versions: 0, max versions: 0
 Average fragment length: 0.00, total fragments: 0, max fragments: 0
 Average unpacked length: 670.00, compression ratio: 3.10
 Pointer pages: 21, data page slots: 65832
 Data pages: 65832, average fill: 88%
 Primary pages: 65832, secondary pages: 0, swept pages: 0
 Empty pages: 4, full pages: 65824
 Fill distribution:
 0 - 19% = 5
 20 - 39% = 2
 40 - 59% = 0
 60 - 79% = 1
 80 - 99% = 65824

From the statistics, it can be seen that the compression ratio is even lower than in Firebird 4.0. So
what accounts for such a colossal gain in performance? To understand this, we need to look at the
structure of this table:

CREATE TABLE WORD_DICTIONARY (
 CODE_DICTIONARY BIGINT NOT NULL,
 CODE_PART_OF_SPEECH INTEGER NOT NULL,
 CODE_WORD_GENDER INTEGER NOT NULL,
 CODE_WORD_AFFIXE INTEGER NOT NULL,
 CODE_WORD_TENSE INTEGER DEFAULT -1 NOT NULL,
 NAME VARCHAR(50) NOT NULL COLLATE UNICODE_CI,
 PARAMS VARCHAR(80),
 ANIMATE D_BOOL DEFAULT 'Нет' NOT NULL /* D_BOOL = VARCHAR(3) CHECK (VALUE

Chapter 2. Improving the data compression algorithm

10

IN('Да', 'Нет')) */,
 PLURAL D_BOOL DEFAULT 'Нет' NOT NULL /* D_BOOL = VARCHAR(3) CHECK (VALUE
IN('Да', 'Нет')) */,
 INVARIABLE D_BOOL DEFAULT 'Нет' NOT NULL /* D_BOOL = VARCHAR(3) CHECK (VALUE
IN('Да', 'Нет')) */,
 TRANSITIVE D_BOOL DEFAULT 'Нет' NOT NULL /* D_BOOL = VARCHAR(3) CHECK (VALUE
IN('Да', 'Нет')) */,
 IMPERATIVE D_BOOL DEFAULT 'Нет' NOT NULL /* D_BOOL = VARCHAR(3) CHECK (VALUE
IN('Да', 'Нет')) */,
 PERFECT D_BOOL DEFAULT 'Нет' NOT NULL /* D_BOOL = VARCHAR(3) CHECK (VALUE
IN('Да', 'Нет')) */,
 CONJUGATION SMALLINT,
 REFLEXIVE D_BOOL DEFAULT 'Нет' NOT NULL /* D_BOOL = VARCHAR(3) CHECK (VALUE
IN('Да', 'Нет')) */,
 PROHIBITION D_BOOL DEFAULT 'Нет' NOT NULL /* D_BOOL = VARCHAR(3) CHECK (VALUE
IN('Да', 'Нет')) */
);

In this table, only the fields NAME and PARAMS can be well compressed. Since the fields of type
INTEGER have the NOT NULL modifier, and the field takes up 4 bytes, such fields are not
compressed in Firebird 5.0. Fields with the D_BOOL domain in UTF8 encoding can be compressed
for the value 'Yes' (12 - 4 = 8 bytes) and will not be for the value 'No' (12 - 6 = 6 bytes).

Since the table has many short sequences that could be compressed in Firebird 4.0 and are not
compressed in Firebird 5.0, the number of runs processed for unpacking in Firebird 5.0 is less,
which gives us a performance gain.

Now I will show an example where the new RLE algorithm greatly wins in compression. For this,
we will execute the following script:

CREATE TABLE GOOD_ZIP
(
 ID BIGINT NOT NULL,
 NAME VARCHAR(100),
 DESCRIPTION VARCHAR(1000),
 CONSTRAINT PK_GOOD_ZIP PRIMARY KEY(ID)
);

SET TERM ^;

EXECUTE BLOCK
AS
DECLARE I BIGINT = 0;
BEGIN
 WHILE (I < 100000) DO
 BEGIN
 I = I + 1;
 INSERT INTO GOOD_ZIP (
 ID,
 NAME,
 DESCRIPTION
)
 VALUES (

Chapter 2. Improving the data compression algorithm

11

 :I,
 'OBJECT_' || :I,
 'OBJECT_' || :I
);
 END
END^

SET TERM ;^

COMMIT;

And now let’s look at the statistics of the table GOOD_ZIP in Firebird 4.0 and Firebird 5.0.

Statistics in Firebird 4.0

GOOD_ZIP (128)
 Primary pointer page: 222, Index root page: 223
 Total formats: 1, used formats: 1
 Average record length: 111.09, total records: 100000
 Average version length: 0.00, total versions: 0, max versions: 0
 Average fragment length: 0.00, total fragments: 0, max fragments: 0
 Average unpacked length: 4420.00, compression ratio: 39.79
 Pointer pages: 2, data page slots: 1936
 Data pages: 1936, average fill: 81%
 Primary pages: 1936, secondary pages: 0, swept pages: 0
 Empty pages: 0, full pages: 1935
 Fill distribution:
 0 - 19% = 0
 20 - 39% = 0
 40 - 59% = 1
 60 - 79% = 5
 80 - 99% = 1930

Statistics in Firebird 5.0

GOOD_ZIP (128)
 Primary pointer page: 225, Index root page: 226
 Total formats: 1, used formats: 1
 Average record length: 53.76, total records: 100000
 Average version length: 0.00, total versions: 0, max versions: 0
 Average fragment length: 0.00, total fragments: 0, max fragments: 0
 Average unpacked length: 4420.00, compression ratio: 82.22
 Pointer pages: 1, data page slots: 1232
 Data pages: 1232, average fill: 70%
 Primary pages: 1232, secondary pages: 0, swept pages: 0
 Empty pages: 2, full pages: 1229
 Fill distribution:
 0 - 19% = 3
 20 - 39% = 0
 40 - 59% = 0
 60 - 79% = 1229
 80 - 99% = 0

Chapter 2. Improving the data compression algorithm

12

As you can see, in this case the compression ratio in Firebird 5.0 is twice as high!

And finally, let’s look at an example with non-compressible data. For this, we will execute the script:

CREATE TABLE NON_ZIP
(
 UID BINARY(16) NOT NULL,
 REF_UID_1 BINARY(16) NOT NULL,
 REF_UID_2 BINARY(16) NOT NULL
);

SET TERM ^;

EXECUTE BLOCK
AS
DECLARE I BIGINT = 0;
BEGIN
 WHILE (I < 100000) DO
 BEGIN
 I = I + 1;
 INSERT INTO NON_ZIP (
 UID,
 REF_UID_1,
 REF_UID_2
)
 VALUES (
 GEN_UUID(),
 GEN_UUID(),
 GEN_UUID()
);
 END
END^

SET TERM ;^

COMMIT;

Let’s look at the statistics of the table NON_ZIP in v4 and v5:

Statistics in Firebird 4.0

NON_ZIP (129)
 Primary pointer page: 2231, Index root page: 2312
 Total formats: 1, used formats: 1
 Average record length: 53.00, total records: 100000
 Average version length: 0.00, total versions: 0, max versions: 0
 Average fragment length: 0.00, total fragments: 0, max fragments: 0
 Average unpacked length: 52.00, compression ratio: 0.98
 Pointer pages: 1, data page slots: 1240
 Data pages: 1240, average fill: 69%
 Primary pages: 1240, secondary pages: 0, swept pages: 0
 Empty pages: 5, full pages: 1234
 Fill distribution:

Chapter 2. Improving the data compression algorithm

13

 0 - 19% = 5
 20 - 39% = 1
 40 - 59% = 0
 60 - 79% = 1234
 80 - 99% = 0

Statistics in Firebird 5.0

NON_ZIP (129)
 Primary pointer page: 1587, Index root page: 1588
 Total formats: 1, used formats: 1
 Average record length: 52.00, total records: 100000
 Average version length: 0.00, total versions: 0, max versions: 0
 Average fragment length: 0.00, total fragments: 0, max fragments: 0
 Average unpacked length: 52.00, compression ratio: 1.00
 Pointer pages: 1, data page slots: 1240
 Data pages: 1240, average fill: 68%
 Primary pages: 1240, secondary pages: 0, swept pages: 0
 Empty pages: 5, full pages: 1234
 Fill distribution:
 0 - 19% = 5
 20 - 39% = 1
 40 - 59% = 0
 60 - 79% = 1234
 80 - 99% = 0

In Firebird 4.0, as a result of compression, the record length increased, Firebird 5.0 saw that as a
result of compression, the records become longer and saved the record as it is.

Chapter 2. Improving the data compression algorithm

14

Chapter 3. Cache of prepared (compiled)
statements
The prepared queries cache is one of the most impressive new features of version 5.0. Simply
enabling the parameter in the configuration can speed up the application in some scenarios (with
frequent queries) by several times.

3.1. A little theory
Any SQL query goes through two mandatory stages: preparation (compilation) and execution.

During the preparation of the query, its syntactic analysis, allocation of buffers for input and output
messages, construction of the query plan and its execution tree are performed.

If the application requires multiple execution of the same query with a different set of input
parameters, then prepare is usually called separately, the handle of the prepared query is saved in
the application, and then execute is called for this handle. This allows to reduce the costs of re-
preparing the same query or each execution.

Starting from Firebird 5.0, a cache of compiled (prepared) queries is supported for each connection.
This allows to reduce the costs for re-preparing the same queries, if your application does not use
explicit caching of handles of prepared queries (at the global level this is not always easy).

By default, caching is enabled, the caching threshold is determined by the parameter
MaxStatementCacheSize in firebird.conf. It can be disabled by setting MaxStatementCacheSize to zero.
The cache is maintained automatically: cached statements become invalid when necessary (usually
when executing any DDL statement).

A query is considered the same if it matches exactly by character, that is, if you
have semantically identical queries, but they differ by a comment, then for the
cache of prepared queries these are different queries.

In addition to top-level queries, stored procedures, functions and triggers also fall into the cache of
prepared queries. The contents of the compiled queries cache can be viewed using the new
monitoring table MON$COMPILED_STATEMENTS.

Table 1. Description of the columns of the table MON$COMPILED_STATEMENTS

Column name Datatype Description

MON$COMPILED_STATEMENT_ID BIGINT Identified of compiled query

MON$SQL_TEXT BLOB TEXT The text of the statement in SQL
language. Inside PSQL objects, the text
of SQL statements is not displayed.

MON$EXPLAINED_PLAN BLOB TEXT Operator’s plan in 'explain' format.

Chapter 3. Cache of prepared (compiled) statements

15

Column name Datatype Description

MON$OBJECT_NAME CHAR(63) Name of PSQL object (trigger, stored
function or stored procedure), where
this SQL operator was compiled.

MON$OBJECT_TYPE SMALLINT Тип объекта. 2 — trigger;
5 — stored procedure;
15 — stored function.

MON$PACKAGE_NAME CHAR(63) Name of PSQL package

MON$STAT_ID INTEGER Identifier of statistics

A new column MON$COMPILED_STATEMENT_ID has appeared in the tables MON$STATEMENTS and
MON$CALL_STACK, which refers to the corresponding prepared statement in MON$COMPILED_STATEMENTS.

The monitoring table MON$COMPILED_STATEMENTS allows you to easily get the plans of internal queries
in a stored procedure, for example like this:

SELECT CS.MON$EXPLAINED_PLAN
FROM MON$COMPILED_STATEMENTS CS
WHERE CS.MON$OBJECT_NAME = 'SP_PEDIGREE'
 AND CS.MON$OBJECT_TYPE = 5
ORDER BY CS.MON$COMPILED_STATEMENT_ID DESC
FETCH FIRST ROW ONLY

Note that the same stored procedure can appear in MON$COMPILED_STATEMENTS
multiple times. This is because currently the cache of prepared queries is made for
each connection. In future versions, it is planned to make the cache of compiled
queries and the metadata cache common for all connections in the Super Server
architecture.

Chapter 3. Cache of prepared (compiled) statements

16

Chapter 4. Support for bidirectional cursors
in the network protocol
A cursor in SQL is an object that allows you to move through the records of any result set. It can be
used to process a single database record returned by a query. There are unidirectional and
bidirectional (scrollable) cursors.

A unidirectional cursor does not support scrolling, that is, retrieving records from such a cursor is
possible only sequentially, from the beginning to the end of the cursor. This type of cursor is
available in Firebird from the earliest versions, both in PSQL (explicitly declared and implicit
cursors) and through the API.

A scrollable or bidirectional cursor allows you to move through the cursor in any direction, jump
around and even move to a given position. Support for bidirectional (scrollable) cursors first
appeared in Firebird 3.0. They are also available in PSQL and through the API interface.

However, until Firebird 5.0, scrollable cursors were not supported at the network protocol level.
This means that you could use the API of bidirectional cursors in your application, only if your
connection occurs in embedded mode. Starting from Firebird 5.0 you can use the API of scrollable
cursors even if you connect to the database over the network protocol, while the client library
fbclient must be no lower than version 5.0.

If your application does not use fbclient, for example written in Java or .NET, then the
corresponding driver must support the network protocol Firebird 5.0. For example, Jaybird 5
supports bidirectional cursors in the network protocol.

Chapter 4. Support for bidirectional cursors in the network protocol

17

Chapter 5. Tracing the COMPILE event
In Firebird 5.0, it became possible to track a new tracing event: parsing stored modules. It allows
you to track the moments of parsing stored modules, the corresponding time spent and most
importantly - the plans of queries inside these PSQL modules. Tracking the plan is also possible if
the PSQL module was already loaded before the start of the tracing session; in this case, the plan
will be reported during the first execution noticed by the tracing session.

The following parameters have appeared in the tracing configuration to track the module parsing
event:

• log_procedure_compile - enables tracing of procedure parsing events;

• log_function_compile - enables tracing of function parsing events;

• log_trigger_compile - enables tracing of trigger parsing events.

Suppose we have the following query:

SELECT * FROM SP_PEDIGREE(7435, 8, 1);

To track the plan of a stored procedure in a tracing session, you need to set the parameter
log_procedure_compile = true. In this case, when preparing this query or executing it, a procedure
parsing event will appear in the tracing log, which looks like this:

2023-10-18T20:40:51.7620 (3920:00000000073A17C0) COMPILE_PROCEDURE
 horses (ATT_30, SYSDBA:NONE, UTF8, TCPv6:::1/54464)
 C:\Firebird\5.0\isql.exe:10960

Procedure SP_PEDIGREE:
^^^
Cursor "V" (scrollable) (line 19, column 3)
 -> Record Buffer (record length: 132)
 -> Nested Loop Join (inner)
 -> Window
 -> Window Partition
 -> Record Buffer (record length: 82)
 -> Sort (record length: 84, key length: 12)
 -> Window Partition
 -> Window Buffer
 -> Record Buffer (record length: 41)
 -> Procedure "SP_HORSE_INBRIDS" as "V H_INB
SP_HORSE_INBRIDS" Scan
 -> Filter
 -> Table "HUE" as "V HUE" Access By ID
 -> Bitmap
 -> Index "HUE_IDX_ORDER" Range Scan (full match)
Select Expression (line 44, column 3)
 -> Recursion
 -> Filter
 -> Table "HORSE" as "PEDIGREE HORSE" Access By ID
 -> Bitmap

Chapter 5. Tracing the COMPILE event

18

 -> Index "PK_HORSE" Unique Scan
 -> Union
 -> Filter (preliminary)
 -> Filter
 -> Table "HORSE" as "PEDIGREE HORSE" Access By ID
 -> Bitmap
 -> Index "PK_HORSE" Unique Scan
 -> Filter (preliminary)
 -> Filter
 -> Table "HORSE" as "PEDIGREE HORSE" Access By ID
 -> Bitmap
 -> Index "PK_HORSE" Unique Scan
 28 ms

Chapter 5. Tracing the COMPILE event

19

Chapter 6. Per-table statistics in isql
Per-table statistics show how many records for each table were read by a full scan, how many using
an index, how many inserted, updated or deleted and other counters. The values of these counters
have been available for a long time through the API function isc_database_info, which was used by
many graphical tools, but not by the console tool isql. The values of these same counters can be
obtained by using the monitoring tables MON$RECORD_STATS and MON$TABLE_STATS, or in
tracing. Starting from Firebird 5.0, this useful feature appeared in isql.

By default, per-table statistics output is disabled.

To enable it, you need to type the command:

SET PER_TAB ON;

To disable:

SET PER_TAB OFF;

The command SET PER_TAB without the words ON or OFF toggles the state of statistics output.

The full syntax of this command can be obtained using the command HELP SET.

Example of per-table statistics output:

SQL> SET PER_TAB ON;

SQL> SELECT COUNT(*)
CON> FROM HORSE
CON> JOIN COLOR ON COLOR.CODE_COLOR = HORSE.CODE_COLOR
CON> JOIN BREED ON BREED.CODE_BREED = HORSE.CODE_BREED;

 COUNT
=====================
 519623

Per table statistics:
--------------+---------+---------+---------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete | Backout | Purge | Expunge |
--------------+---------+---------+---------+---------+---------+---------+---------+---------+
BREED | 282| | | | | | | |
COLOR | 239| | | | | | | |
HORSE | | 519623| | | | | | |
--------------+---------+---------+---------+---------+---------+---------+---------+---------+

Chapter 6. Per-table statistics in isql

20

Chapter 7. Parallel execution of maintenance
tasks
Since version 5.0 Firebird can perform main maintenance tasks using multiple threads in parallel.
Some of these tasks uses parallelism at the Firebird kernel level, others are implemented directly in
the Firebird tool. Currently, only the parallel execution of sweep and index creation tasks is
implemented at the kernel level. Parallel execution is supported for both automatic and manual
sweeps.

In future versions it is planned to add parallelism when executing SQL queries.

7.1. Parallel execution of tasks in the Firebird kernel
To handle a task with multiple threads, the Firebird engine launches additional worker threads and
creates internal worker connections. By default, parallel execution is disabled. There are two ways
to enable parallel features for the connection:

• Set the number of parallel workers in DPB using the isc_dpb_parallel_workers tag;

• Set the default number of parallel worker processes using the ParallelWorkers parameter in
firebird.conf.

Some utilities (gfix, gbak) supplied with Firebird have a command line option -parallel to set the
number of parallel worker processes. Often this switch will simply pass the number of workers
through the isc_dpb_parallel_workers tag when connecting to the database. The new
ParallelWorkers parameter in firebird.conf sets the default number of parallel worker processes
that can be used by any user connection running a parallelizable task. The default value is 1 and
means no additional parallel worker processes are used. The value in DPB takes precedence over
the value in firebird.conf.

To control the number of additional workers the engine can create, there are two new settings in
firebird.conf:

ParallelWorkers

Sets the default number of parallel worker processes used by user connections. Can be
overridden for a connection by using the isc_dpb_parallel_workers tag in the DPB.

MaxParallelWorkers

Limits the maximum number of concurrent worker processes for a given database and Firebird
process.

Internal workers are created and managed by the Firebird engine itself. The engine maintains
worker connection pools for each database. The number of threads in each pool is limited by the
value of the MaxParallelWorkers parameter. Pools are created independently by each Firebird
process. In the SuperServer architecture, worker connections are implemented as lightweight
system connections, while in Classic and SuperClassic they look like regular user connections. All
workers connections are built into the server creation process. Thus, in Сlassic architectures there
are no additional server processes. Worker connections are present in the monitoring tables. Dead

Chapter 7. Parallel execution of maintenance tasks

21

working connections are destroyed after 60 seconds of inactivity. Additionally, in classic
architectures, worker connections are destroyed immediately after the last user connection is
disconnected from the database.

7.1.1. Practical recommendations for parameters

What are practical recommendations? Since this feature came from HQbrid (vv2.5-4) where it was
used during several years on hundreds of servers, we can use its experience for Firebird 5.0. For
SuperServer it is recommended to set parameter MaxParallelWorkers to 64, and ParallelWorkers to 2.
For maintenance tasks (backup/restore/sweep) it is better to set individually with switch -parallel,
with the value equal to the half of the number of physical cores of your processor (or all
processors).

For Classic architecture, MaxParallelWorkers should be set to a number smaller than the number of
physical cores of your processor it is important since the MaxParallelWorkers limit is set on each
process.

It all depends on whether it is done under load or not. If I restore the database,
then at that moment no one else is working with it. I can ask for the maximum. But
if you are doing a backup/sweep/creating an index under load, then you need to
moderate your appetites.

Let’s look at how parallelism affects the execution time of building or rebuilding an index. The
effect of parallelism on automatic sweep will not be shown, since it starts automatically without our
participation. Impact of concurrency on manual sweep will be demonstrated when examining how
Firebird tools perform maintenance tasks.

7.1.2. Multi-threaded index creation or rebuild

Let’s compare the speed of creating an index for the WORD_DICTIONARY table for different
ParallelWorkers values, containing 4079052 records.

For the purity of the experiment, before the new test, we restart the Firebird service. In addition, in
order for the table to be in the page cache, we run the following query:

SELECT COUNT(*) FROM WORD_DICTIONARY;

The query to create an index looks like this:

CREATE INDEX IDX_WORD_DICTIONARY_NAME ON WORD_DICTIONARY (NAME);

The execution statistics for this query with ParallelWorkers = 1 are as follows:

Current memory = 2577810256
Delta memory = 310720
Max memory = 3930465024
Elapsed time = 6.798 sec

Chapter 7. Parallel execution of maintenance tasks

22

Buffers = 153600
Reads = 11
Writes = 2273
Fetches = 4347093

Now let’s delete this index, set ParallelWorkers = 4 and MaxParallelWorkers = 4 in the config and
restart the server. Statistics for running the same query look like this:

Current memory = 2580355968
Delta memory = 2856432
Max memory = 4157427072
Elapsed time = 3.175 sec
Buffers = 153600
Reads = 11
Writes = 2277
Fetches = 4142838

As you can see, the index creation time has decreased by a little over 2 times.

The same thing happens when rebuilding the index with the query:

ALTER INDEX IDX_WORD_DICTIONARY_NAME ACTIVE;

7.2. Parallel execution of maintenance tasks by Firebird
tools
Main utilities (gfix, gbak) supplied with Firebird also support parallel task execution. They use the
number of parallel worker processes set in the ParallelWorkers parameter in firebird.conf. The
number of parallel worker processes can be overridden using the -parallel command line switch.

It is recommended to always set the number of parallel processes explicitly using the -parallel or
-par switch.

The following tasks can use parallel execution:

• Creating a backup using the gbak utility

• Restoring from a backup using the gbak utility

• Manual sweep using the gfix utility

• Updating icu using the gfix utility

7.2.1. Parallelism when performing backups using the gbak

Let’s see how parallel execution will affect backup’s speed of gbak tool.

We will use the fastest backup option - through the service manager and with garbage collection
disabled. In order to be able to track the time of each operation during the backup, we will add the

Chapter 7. Parallel execution of maintenance tasks

23

-stat td switch.

First, let’s run the backup without parallelism:

gbak -b -g -par 1 "c:\fbdata\db.fdb" "d:\fbdata\db.fbk" -se localhost/3055:service_mgr -user
SYSDBA
 -pas masterkey -stat td -v -Y "d:\fbdata\5.0\backup.log"

The backup completed in 35.810 seconds.

Now let’s try to run a backup using 4 threads (on the computer which has 8 cores).

gbak -b -g -par 4 "c:\fbdata\db.fdb" "d:\fbdata\db.fbk" -se localhost/3055:service_mgr -user
SYSDBA
 -pas masterkey -stat td -v -Y "d:\fbdata\5.0\backup-4.log"

The backup completed in 18.267 seconds!

As you can see, as the number of parallel processors increases, the backup speed increases,
although not linearly.

In fact, the effect of parallel threads on backup speed depends on your hardware.
The optimal number of parallel threads should be selected experimentally.

Any additional switches can also change the picture. For example, the -ZIP switch
compresses the backup copy may reduce parallelism to almost nothing, or may still
speed up copying. It depends on the speed of the disk drive, whether the copy is
made to the same disk where the database is located and other factors. Therefore,
it is necessary to conduct experiments on your hardware to find the ideal value.

7.2.2. Parallelism when performing restore using the gbak

Now let’s look at how parallelism affects the speed of restoring from a backup. Restoring from a
backup consists of the following steps:

• creating a database with the corresponding ODS;

• restoring metadata from a backup copy;

• inserting data to user tables;

• build indices.

Parallelism will only be involved in the last two stages.

In order to be able to track the time of each operation during restoration from a backup, we will
add the -stat td switch.

First, let’s start restoring from a backup without parallelism:

Chapter 7. Parallel execution of maintenance tasks

24

gbak -c -par 1 "d:\fbdata\db.fbk" "c:\fbdata\db.fdb" -se localhost/3055:service_mgr -user
SYSDBA
 -pas masterkey -v -stat td -Y "d:\fbdata\restore.log"

Restore from backup completed in 201.590 seconds. Of these, 70.73 seconds were spent on restoring
table data and 121.142 seconds on building indexes.

Now let’s try to start restoring from a backup using 4 threads.

gbak -c -par 4 "d:\fbdata\db.fbk" "c:\fbdata\db.fdb" -se localhost/3055:service_mgr -user
SYSDBA
 -pas masterkey -v -stat td -Y "d:\fbdata\restore-4.log"

Restore from backup completed in 116.718 seconds. Of these, 26.748 seconds were spent on
restoring table data and 86.075 seconds on building indexes.

With the help of 4 parallel workers, we were able to almost double the recovery speed. At the same
time, the speed of data recovery has increased by almost 3 times, and the construction of indexes
has accelerated by 1.5 times.

Why? The explanation is simple: parallelism is used only when engine builds large indexes. Many
tables in the database taken as an example are small, the indexes on them are small too, and the
number of such tables is large. Therefore, the numbers in your database may be different.

Note that the MaxParallelWorkers parameter limits the use of parallel threads to
the Firebird kernel only. When restoring a database using the gbak utility, you can
observe the following picture: data in tables is restored quickly (parallelism is
noticeable), and building indexes is slower. The point is that indexes are always
built by the Firebird kernel. And if MaxParallelWorkers has a value less than that
specified in -parallel, then only MaxParallelWorkers of threads will be used to
build indexes. However, gbak inserts data to the tables, using -parallel worker
threads.

7.2.3. Parallel manual sweep using the gfix tool

Sweep (cleaning) is the important maintenance process: Firebird scans specified database, and if
there are “garbage” records versions, remove them from data pages and from indices. By default,
Firebird database is created with autosweep setting, but for the medium and large databases
(30+Gb) with high number of transactions per second it could be necessary to disable automatic
sweep use manual (usually, scheduled) sweep instead.

Before Firebird 3.0 sweep always scanned all data pages. However, starting with
Firebird 3.0 (ODS 12.0), data pages (DP) and pointer pages to data pages (PP) have a
special swept flag that is set to 1 if sweep has already scanned the data page and
cleared garbage from it. When records in this table are modified for the first time,
the flag is reset to 0 again. Starting with Firebird 3.0, automatic and manual sweep
skips pages that have the swept flag set to 1. Therefore, a repeated sweep will go

Chapter 7. Parallel execution of maintenance tasks

25

much faster, unless, of course, since the previous sweep you have not managed to
change records on all pages of the database data. New data pages are always
created with swept flag = 0. When restoring the database and backup, all DP and
PP pages will be with swept flag = 0.

How to test correctly? An idle sweep after restoring from the database did not show any difference
in single-threaded and multi-threaded mode. Therefore, I first ran a sweep on the restored database
so that the next sweep would not check uncluttered pages, and then I made a request like this:

update bigtable set field=field;
rollback;
exit;

The purpose of this request was to create 'garbage' in the database. Now you can run the sweep to
test its execution speed.

First, let’s run sweep without parallelism:

gfix -user SYSDBA -password masterkey -sweep -par 1 inet://localhost:3055/mydb

DESKTOP-E3INAFT Sun Oct 22 16:24:21 2023
 Sweep is started by SYSDBA
 Database "mydb"
 OIT 694, OAT 695, OST 695, Next 696

DESKTOP-E3INAFT Sun Oct 22 16:24:42 2023
 Sweep is finished
 Database "mydb"
 1 workers, time 20.642 sec
 OIT 696, OAT 695, OST 695, Next 697

Now we will update the large table and rollback again, and run a sweep with 4 parallel workers.

gfix -user SYSDBA -password masterkey -sweep -par 4 inet://localhost:3055/mydb

DESKTOP-E3INAFT Sun Oct 22 16:26:56 2023
 Sweep is started by SYSDBA
 Database "mydb"
 OIT 697, OAT 698, OST 698, Next 699

DESKTOP-E3INAFT Sun Oct 22 16:27:06 2023
 Sweep is finished
 Database "mydb"
 4 workers, time 9.406 sec
 OIT 699, OAT 702, OST 701, Next 703

Chapter 7. Parallel execution of maintenance tasks

26

As you can see, the speed of sweep execution has increased more than 2 times.

7.2.4. Parallel icu update using the gfix utility

The -icu switch allows you to rebuild the indexes in the database using the new ICU.

The ICU library is used by Firebird to support COLLATION for multibyte encodings like UTF8. On
Windows, ICU is always bundled with Firebird. In Linux, ICU is usually a system library and
depends on Linux version. When moving a database file from one Linux distribution to another,
the ICU installed on the system may have a different version. This may result in a database on an
OS running a different version of ICU being binary incompatible for indexes character data types.

Since rebuilding indexes can be done using parallelism, this is also supported for gfix -icu.

Chapter 7. Parallel execution of maintenance tasks

27

Chapter 8. Improvements in Optimizer
The optimizer is a part of Firebird database engine which is responsible for decision: how to
execute the SQL on the specific database in the fastest way. In v5.0 Firebird optimizer has received
the biggest amount of changes since version 2.0. It is the most practical part which directly
improves the performance of SQLs for databases of any size, from 1Gb to 1Tb. Let’s see in details
what was improved, with examples and performance comparisons.

8.1. Cost estimation of HASH vs NESTED LOOP JOIN
HASH JOIN appeared in Firebird 3.0.

The simplified idea of HASH JOIN is to cache the small dataset (e.g., a small table) into the memory,
calculate hashes of keys, and use the hash of the key to join with larger dataset (e.g., a large table). If
there will be the same hash for the several records, they will be processed one by one, to find the
exactly the same key. HASH JOIN works only with strict key equality (i.e., =), and allows expressions
with keys.

Until version 5.0, Firebird optimizer uses HASH JOIN only in a case of absence of indices for the join
condition. If there is index, optimizer of pre-v5 version will use NESTED LOOP JOIN (usually it is
INNER JOIN) with index. However, it is not always the fastest way: for example, if very large table is
joined with small table using the primary key using INNER JOIN, each record of small table will be
read multiple times (data pages and appropriate index pages). With HASH JOIN, the small table will
be read once, cached, and calculated hashes will be used to join with very large table.

The obvious question is when to use HASH JOIN and when NESTED LOOP JOIN (INNER JOIN in
majority cases)? It is relatively easy to decide to use HASH when small table like CLIENT_COUNTRY is
joining with large table like INVOICES, but not all situations are clear. Until Firebird 5, the decision
was the sole responsibility of the developer, since it required change of the text of SQL query, now
it is done by Firebird optimizer using cost estimation algorithm.

To better understand the effect of HASH JOIN, let’s consider how the same query will be executed in
Firebird 4.0 and in Firebird 5.0. To analyze the difference, we have EXPLAIN PLAN, query execution
statistics and extended statistics from the isql with set per-tab option (new in 5.0).

In the example below, we the large table named HORSE, where we have list of horses, and small
tables with a few records: SEX, COLOR, BREED, FARM. The query selects all records from the large table.

We use COUNT(*) to read all records, and to exclude time to transfer records from the server to the
client.

SELECT
 COUNT(*)
FROM
 HORSE
 JOIN SEX ON SEX.CODE_SEX = HORSE.CODE_SEX
 JOIN COLOR ON COLOR.CODE_COLOR = HORSE.CODE_COLOR
 JOIN BREED ON BREED.CODE_BREED = HORSE.CODE_BREED

Chapter 8. Improvements in Optimizer

28

 JOIN FARM ON FARM.CODE_FARM = HORSE.CODE_FARM

In Firebird 4.0:

Select Expression
 -> Aggregate
 -> Nested Loop Join (inner)
 -> Table "COLOR" Full Scan
 -> Filter
 -> Table "HORSE" Access By ID
 -> Bitmap
 -> Index "FK_HORSE_COLOR" Range Scan (full match)
 -> Filter
 -> Table "SEX" Access By ID
 -> Bitmap
 -> Index "PK_SEX" Unique Scan
 -> Filter
 -> Table "BREED" Access By ID
 -> Bitmap
 -> Index "PK_BREED" Unique Scan
 -> Filter
 -> Table "FARM" Access By ID
 -> Bitmap
 -> Index "PK_FARM" Unique Scan

 COUNT
=====================
 519623

Current memory = 2614108752
Delta memory = 438016
Max memory = 2614392048
Elapsed time = 2.642 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 5857109
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
BREED | | 519623| | | |
COLOR | 239| | | | |
FARM | | 519623| | | |
HORSE | | 519623| | | |
SEX | | 519623| | | |
--------------------------------+---------+---------+---------+---------+---------+

And in Firebird 5.0. The optimizer of v5 uses cardinality of table to decide when to use HASH JOIN.

Select Expression
 -> Aggregate
 -> Filter

Chapter 8. Improvements in Optimizer

29

 -> Hash Join (inner)
 -> Hash Join (inner)
 -> Hash Join (inner)
 -> Nested Loop Join (inner)
 -> Table "COLOR" Full Scan
 -> Filter
 -> Table "HORSE" Access By ID
 -> Bitmap
 -> Index "FK_HORSE_COLOR" Range Scan (full match)
 -> Record Buffer (record length: 25)
 -> Table "SEX" Full Scan
 -> Record Buffer (record length: 25)
 -> Table "BREED" Full Scan
 -> Record Buffer (record length: 33)
 -> Table "FARM" Full Scan

 COUNT
=====================
 519623

Current memory = 2579749376
Delta memory = 352
Max memory = 2582802608
Elapsed time = 0.702 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 645256
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
BREED | 282| | | | |
COLOR | 239| | | | |
FARM | 36805| | | | |
HORSE | | 519623| | | |
SEX | 4| | | | |
--------------------------------+---------+---------+---------+---------+---------+

As you can see, HASH JOIN in this situation is 3.5 times faster!

8.2. Cost estimation of HASH vs MERGE JOIN
In Firebird 3.0 the algorithm MERGE JOIN was temporary disabled in favor of HASH JOIN. Usually it
was used when NESTED LOOP JOIN was non-optimal (when there were no indices for join
condition, or when joining datasets were not related).

And, in the majority of situations, HASH JOIN is more effective than MERGE JOIN, due to the fact
that it does not require to sort joining datasets with keys before the merge, however, there are a
few cases when MERGE JOIN is better than HASH JOIN:

• Merged datasets are already sorted with the join key, for example, merge of 2 subselects with
keys specified in GROUP BY:

Chapter 8. Improvements in Optimizer

30

select count(*)
from
(
 select code_father+0 as code_father, count(*) as cnt
 from horse group by 1
) h
join (
 select code_father+0 as code_father, count(*) as cnt
 from cover group by 1
) c on h.code_father = c.code_father

In this example, merged datasets are already sorted by the key code_father, and we don’t need
to sort them again, in this case MERGE JOIN will be the most effective.

Unfortunately, Firebird 5.0 cannot recognize this situation, hopefully it will appear in the next
version.

• Merged datasets are very large. In this case hash-table will become very large and will not fit
into memory. The optimizer of Firebird v5 checks cardinalities of merged datasets (tables, for
example), and if the smallest is more than 1009000 records, v5 will choose MERGE JOIN instead
of HASH JOIN. In the explain plan we will see it in the following manner:

SELECT
 *
FROM
 BIG_1
 JOIN BIG_2 ON BIG_2.F_2 = BIG_1.F_1

Select Expression
 -> Filter
 -> Merge Join (inner)
 -> Sort (record length: 44, key length: 12)
 -> Table "BIG_2" Full Scan
 -> Sort (record length: 44, key length: 12)
 -> Table "BIG_1" Full Scan

8.3. Transforming OUTER JOIN into INNER JOIN
In current versions of Firebird (including v5), OUTER JOIN (LEFT JOIN, as the most often example),
can be executed only with algorithm NESTED LOOP JOIN, with index for the key of joining table (if
possible). The biggest restriction of the LEFT JOIN is the strict order of joining, so optimizer cannot
change it to keep the result set exactly the same as it was designed by the developer.

However, if there is non-NULL condition in the “right” (joining) table, the OUTER JOIN works as
INNER, with the exception of join order – it is still locked. However, it is true only for previous
versions: in v5 Firebird will transform the OUTER join to the INNER, and optimize it.

For example, we have the following query, where we join the large table HORSES with small table

Chapter 8. Improvements in Optimizer

31

FARM, using LEFT JOIN. As you can see, the query has condition on the “right” table FARM, which
effectively excludes NULLified records which could produce LEFT JOIN, it means that it is implicit
INNER JOIN, but with forced order of join, which prevents optimizer of pre-v5 to filter records on
FARM first.

SELECT
 COUNT(*)
FROM
 HORSE
 LEFT JOIN FARM ON FARM.CODE_FARM = HORSE.CODE_FARM
WHERE FARM.CODE_COUNTRY = 1

The result in Firebird 4.0:

Select Expression
 -> Aggregate
 -> Filter
 -> Nested Loop Join (outer)
 -> Table "HORSE" Full Scan
 -> Filter
 -> Table "FARM" Access By ID
 -> Bitmap
 -> Index "PK_FARM" Unique Scan

 COUNT
=====================
 345525

Current memory = 2612613792
Delta memory = 0
Max memory = 2614392048
Elapsed time = 1.524 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 2671475
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
FARM | | 519623| | | |
HORSE | 519623| | | | |
--------------------------------+---------+---------+---------+---------+---------+

Select Expression
 -> Aggregate
 -> Nested Loop Join (inner)
 -> Filter
 -> Table "FARM" Access By ID
 -> Bitmap
 -> Index "FK_FARM_COUNTRY" Range Scan (full match)
 -> Filter

Chapter 8. Improvements in Optimizer

32

 -> Table "HORSE" Access By ID
 -> Bitmap
 -> Index "FK_HORSE_FARMBORN" Range Scan (full match)

 COUNT
=====================
 345525

Current memory = 2580089760
Delta memory = 240
Max memory = 2582802608
Elapsed time = 0.294 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 563801
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
FARM | | 32787| | | |
HORSE | | 345525| | | |
--------------------------------+---------+---------+---------+---------+---------+

As you can see, Firebird v4 follows the specified order of joining – first, it reads the whole table
HORSE without an index (there is not condition on HORSE), then join FARM using the join condition
index.

In Firebird 5.0 the plan is different:

SELECT
 COUNT(*)
FROM
 HORSE
 LEFT JOIN FARM ON FARM.CODE_FARM = HORSE.CODE_FARM
WHERE FARM.CODE_FARM IS NOT NULL

Select Expression
 -> Aggregate
 -> Filter
 -> Nested Loop Join (outer)
 -> Table "HORSE" Full Scan
 -> Filter
 -> Table "FARM" Access By ID
 -> Bitmap
 -> Index "PK_FARM" Unique Scan

 COUNT
=====================
 519623

Current memory = 2580315664
Delta memory = 240

Chapter 8. Improvements in Optimizer

33

Max memory = 2582802608
Elapsed time = 1.151 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 2676533
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
FARM | | 519623| | | |
HORSE | 519623| | | | |
--------------------------------+---------+---------+---------+---------+---------+

As you can see, Firebird 5.0 recognized that LEFT JOIN can be transformed to INNER due to the
condition on the right side, and applied the index for FARM.

As a result, the same query in Firebird 5.0 is executed 4x times faster.

This transformation is very important for dynamically built queries, with custom conditions
(various reports, or ORM-generated queries).

8.4. Converting subqueries to ANY/SOME/IN/EXISTS in
semi-join
A semi-join is an operation that joins two relations, returning rows from only one of the relations
without performing the entire join. Unlike other join operators, there is no explicit syntax for
specifying whether to perform a semi-join. However, you can perform a semi-join using subqueries
in ANY/SOME/IN/EXISTS.

Traditionally, Firebird transforms subqueries in ANY/SOME/IN predicates into correlated
subqueries in the EXISTS predicate, and executes the subquery in EXISTS for each record of the
outer query. When executing a subquery inside an EXISTS predicate, the FIRST ROWS strategy is
used, and its execution stops immediately after the first record is returned.

Starting with Firebird 5.0.1, subqueries in ANY/SOME/IN/EXISTS predicates can be converted to
semi-joins. This feature is disabled by default, and can be enabled by setting the SubQueryConversion
configuration parameter to true in the firebird.conf or database.conf file.

This feature is experimental, so it is disabled by default. You can enable it and test
your queries with subqueries in ANY/SOME/IN/EXISTS predicates, and if the
performance is better, leave it enabled, otherwise set the SubQueryConversion
parameter back to the default (false).

The default value for the SubQueryConversion configuration parameter may be
changed in the future, or the parameter may be removed altogether. This will
happen once the new way of doing things is proven to be more optimal in most
cases.

Chapter 8. Improvements in Optimizer

34

Unlike performing ANY/SOME/IN/EXISTS on subqueries directly, i.e. as correlated subqueries,
performing them as semi-joins gives more room for optimization. Semi-joins can be performed by
various Hash Join (semi) or Nested Loop Join (semi) algorithms, while correlated subqueries are
always performed for each record of the outer query.

Let’s try to enable this feature by setting the SubQueryConversion parameter to true in the
firebird.conf file. Now let’s do some experiments.

Let’s execute the following query:

SELECT
 COUNT(*)
FROM
 HORSE H
WHERE H.CODE_DEPARTURE = 1
 AND H.CODE_SEX = 2
 AND H.CODE_HORSE IN (
 SELECT COVER.CODE_FATHER
 FROM COVER
 WHERE COVER.CODE_DEPARTURE = 1
 AND EXTRACT(YEAR FROM COVER.BYDATE) = 2023
)

Select Expression
 -> Aggregate
 -> Filter
 -> Hash Join (semi)
 -> Filter
 -> Table "HORSE" as "H" Access By ID
 -> Bitmap And
 -> Bitmap
 -> Index "FK_HORSE_DEPARTURE" Range Scan (full match)
 -> Bitmap
 -> Index "FK_HORSE_SEX" Range Scan (full match)
 -> Record Buffer (record length: 41)
 -> Filter
 -> Table "COVER" Access By ID
 -> Bitmap And
 -> Bitmap
 -> Index "IDX_COVER_BYYEAR" Range Scan (full match)
 -> Bitmap
 -> Index "FK_COVER_DEPARTURE" Range Scan (full match)

 COUNT
=====================
 297

Current memory = 552356752
Delta memory = 352
Max memory = 552567920
Elapsed time = 0.045 sec
Buffers = 32768
Reads = 0

Chapter 8. Improvements in Optimizer

35

Writes = 0
Fetches = 43984
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
COVER | | 1516| | | |
HORSE | | 37069| | | |
--------------------------------+---------+---------+---------+---------+---------+

In the execution plan we see a new join method Hash Join (semi). The result of the subquery in IN
was buffered, which is visible in the plan as Record Buffer (record length: 41). That is, in this case
the subquery in IN was executed once, its result was saved in the hash table memory, and then the
outer query simply searched in this hash table.

For comparison, let’s run the same query with subquery-to-semijoin conversion disabled.

Sub-query
 -> Filter
 -> Filter
 -> Table "COVER" Access By ID
 -> Bitmap And
 -> Bitmap
 -> Index "FK_COVER_FATHER" Range Scan (full match)
 -> Bitmap
 -> Index "IDX_COVER_BYYEAR" Range Scan (full match)
Select Expression
 -> Aggregate
 -> Filter
 -> Table "HORSE" as "H" Access By ID
 -> Bitmap And
 -> Bitmap
 -> Index "FK_HORSE_DEPARTURE" Range Scan (full match)
 -> Bitmap
 -> Index "FK_HORSE_SEX" Range Scan (full match)

 COUNT
=====================
 297

Current memory = 552046496
Delta memory = 352
Max memory = 552135600
Elapsed time = 0.395 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 186891
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
COVER | | 297| | | |
HORSE | | 37069| | | |

Chapter 8. Improvements in Optimizer

36

--------------------------------+---------+---------+---------+---------+---------+

The execution plan shows that the subquery is executed for each record of the main query, but uses
an additional index FK_COVER_FATHER. This is also visible in the execution statistics: the number of
Fetches is 4 times greater, the execution time is almost 4 times worse.

The reader may ask: why does hash semi-join show 5 times more index reads of
the COVER table, but otherwise it is better? The fact is that index reads in statistics
show the number of records read using the index, they do not show the total
number of index accesses, some of which do not result in retrieving records at all,
but these accesses are not free.

What happened? To better understand the transformation of subqueries, let’s introduce an
imaginary semi-join operator "SEMI JOIN". As I already said, this type of join is not represented in
the SQL language. Our query with the IN operator was transformed into an equivalent form, which
can be written as follows:

SELECT
 COUNT(*)
FROM
 HORSE H
 SEMI JOIN (
 SELECT COVER.CODE_FATHER
 FROM COVER
 WHERE COVER.CODE_DEPARTURE = 1
 AND EXTRACT(YEAR FROM COVER.BYDATE) = 2023
) TMP ON TMP.CODE_FATHER = H.CODE_HORSE
WHERE H.CODE_DEPARTURE = 1
 AND H.CODE_SEX = 2

Now it’s clearer. The same thing happens for subqueries using EXISTS. Let’s look at another
example:

SELECT
 COUNT(*)
FROM
 HORSE H
WHERE H.CODE_DEPARTURE = 1
 AND EXISTS (
 SELECT *
 FROM COVER
 WHERE COVER.CODE_DEPARTURE = 1
 AND COVER.CODE_FATHER = H.CODE_FATHER
 AND COVER.CODE_MOTHER = H.CODE_MOTHER
)

Currently, it is not possible to write such an EXISTS using IN. Let’s see how it is implemented
without transforming it into a semi-join.

Chapter 8. Improvements in Optimizer

37

Sub-query
 -> Filter
 -> Table "COVER" Access By ID
 -> Bitmap And
 -> Bitmap
 -> Index "FK_COVER_MOTHER" Range Scan (full match)
 -> Bitmap
 -> Index "FK_COVER_FATHER" Range Scan (full match)
Select Expression
 -> Aggregate
 -> Filter
 -> Table "HORSE" as "H" Access By ID
 -> Bitmap
 -> Index "FK_HORSE_DEPARTURE" Range Scan (full match)

 COUNT
=====================
 91908

Current memory = 552240400
Delta memory = 352
Max memory = 554680016
Elapsed time = 19.083 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 935679
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
COVER | | 91908| | | |
HORSE | | 96021| | | |
--------------------------------+---------+---------+---------+---------+---------+

Very slow. Now let’s set SubQueryConversion = true and run the query again.

Select Expression
 -> Aggregate
 -> Filter
 -> Hash Join (semi)
 -> Filter
 -> Table "HORSE" as "H" Access By ID
 -> Bitmap
 -> Index "FK_HORSE_DEPARTURE" Range Scan (full match)
 -> Record Buffer (record length: 49)
 -> Filter
 -> Table "COVER" Access By ID
 -> Bitmap
 -> Index "FK_COVER_DEPARTURE" Range Scan (full match)

 COUNT
=====================
 91908

Chapter 8. Improvements in Optimizer

38

Current memory = 552102000
Delta memory = 352
Max memory = 561520736
Elapsed time = 0.208 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 248009
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
COVER | | 140254| | | |
HORSE | | 96021| | | |
--------------------------------+---------+---------+---------+---------+---------+

The query was executed 100 times faster! If we rewrite it using our fictitious SEMI JOIN operator,
the query will look like this:

SELECT
 COUNT(*)
FROM
 HORSE H
 SEMI JOIN (
 SELECT
 COVER.CODE_FATHER,
 COVER.CODE_MOTHER
 FROM COVER
) TMP ON TMP.CODE_FATHER = H.CODE_FATHER AND TMP.CODE_MOTHER = H.CODE_MOTHER
WHERE H.CODE_DEPARTURE = 1

Can any correlated subquery in IN/EXISTS be converted to a semi-join? No, not any, for example, if
the subquery contains FETCH/FIRST/SKIP/ROWS filters, then the subquery cannot be converted to a
semi-join and it will be executed as a correlated subquery. Here is an example of such a query:

SELECT
 COUNT(*)
FROM
 HORSE H
WHERE H.CODE_DEPARTURE = 1
 AND EXISTS (
 SELECT *
 FROM COVER
 WHERE COVER.CODE_FATHER = H.CODE_HORSE
 OFFSET 0 ROWS
)

Here the phrase OFFSET 0 ROWS does not change the semantics of the query, and the result of its
execution will be the same as without it. Let’s look at the plan and statistics of this query.

Chapter 8. Improvements in Optimizer

39

Sub-query
 -> Skip N Records
 -> Filter
 -> Table "COVER" Access By ID
 -> Bitmap
 -> Index "FK_COVER_FATHER" Range Scan (full match)
Select Expression
 -> Aggregate
 -> Filter
 -> Table "HORSE" as "H" Access By ID
 -> Bitmap
 -> Index "FK_HORSE_DEPARTURE" Range Scan (full match)

 COUNT
=====================
 10971

Current memory = 551912944
Delta memory = 288
Max memory = 552002112
Elapsed time = 0.201 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 408988
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
COVER | | 10971| | | |
HORSE | | 96021| | | |
--------------------------------+---------+---------+---------+---------+---------+

As you can see, the transformation to a semi-join did not occur. Now let’s remove OFFSET 0 ROWS and
take statistics again.

Select Expression
 -> Aggregate
 -> Filter
 -> Hash Join (semi)
 -> Filter
 -> Table "HORSE" as "H" Access By ID
 -> Bitmap
 -> Index "FK_HORSE_DEPARTURE" Range Scan (full match)
 -> Record Buffer (record length: 33)
 -> Table "COVER" Full Scan

 COUNT
=====================
 10971

Current memory = 552112128
Delta memory = 288
Max memory = 585044592

Chapter 8. Improvements in Optimizer

40

Elapsed time = 0.405 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 854841
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
COVER | 722465| | | | |
HORSE | | 96021| | | |
--------------------------------+---------+---------+---------+---------+---------+

Here the conversion to semi-join has happened, and as we can see the execution time has become
worse. The reason is that currently the optimizer does not have a cost estimate between the Hash
Join (semi) and Nested Loop Join (semi) join algorithms using an index, so the rule is: if the join
condition contains only equality, then the Hash Join (semi) algorithm is chosen, otherwise the
IN/EXISTS subqueries are executed as usual.

Now let’s disable the semi-join conversion and look at the execution statistics.

Sub-query
 -> Filter
 -> Table "COVER" Access By ID
 -> Bitmap
 -> Index "FK_COVER_FATHER" Range Scan (full match)
Select Expression
 -> Aggregate
 -> Filter
 -> Table "HORSE" as "H" Access By ID
 -> Bitmap
 -> Index "FK_HORSE_DEPARTURE" Range Scan (full match)

 COUNT
=====================
 10971

Current memory = 551912752
Delta memory = 288
Max memory = 552001920
Elapsed time = 0.193 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 408988
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
COVER | | 10971| | | |
HORSE | | 96021| | | |
--------------------------------+---------+---------+---------+---------+---------+

Chapter 8. Improvements in Optimizer

41

As you can see, Fetches is exactly equal to the case when the subquery contained the clause OFFSET
0 ROWS, and the execution time differs within the margin of error. This means that you can use the
clause OFFSET 0 ROWS as a hint to disable the semi-join conversion.

Now let’s look at cases where any correlated condition other than equality and IS NOT DISTINCT
FROM is used in subqueries.

SELECT
 COUNT(*)
FROM
 HORSE H
WHERE H.CODE_DEPARTURE = 1
 AND EXISTS (
 SELECT *
 FROM COVER
 WHERE COVER.BYDATE > H.BIRTHDAY
)

Sub-query
 -> Filter
 -> Table "COVER" Access By ID
 -> Bitmap
 -> Index "COVER_IDX_BYDATE" Range Scan (lower bound: 1/1)
Select Expression
 -> Aggregate
 -> Filter
 -> Table "HORSE" as "H" Access By ID
 -> Bitmap
 -> Index "FK_HORSE_DEPARTURE" Range Scan (full match)

As I said above, no transformation to a semi-join occurred, the subquery is executed for each
record of the main query.

Let’s continue the experiments, write a query using equality and one more predicate except
equality.

SELECT
 COUNT(*)
FROM
 HORSE H
WHERE H.CODE_DEPARTURE = 1
 AND EXISTS (
 SELECT *
 FROM COVER
 WHERE COVER.CODE_FATHER = H.CODE_FATHER
 AND COVER.BYDATE > H.BIRTHDAY
)

Select Expression
 -> Aggregate

Chapter 8. Improvements in Optimizer

42

 -> Nested Loop Join (semi)
 -> Filter
 -> Table "HORSE" as "H" Access By ID
 -> Bitmap
 -> Index "FK_HORSE_DEPARTURE" Range Scan (full match)
 -> Filter
 -> Filter
 -> Table "COVER" Access By ID
 -> Bitmap
 -> Index "COVER_IDX_BYDATE" Range Scan (lower bound: 1/1)

Here in the plan we see the first use of the Nested Loop Join (semi) join method, but unfortunately
this plan is bad, because the FK_COVER_FATHER index is not used. You will not get any results from
such a query. This can be fixed using the OFFSET 0 ROWS hint.

SELECT
 COUNT(*)
FROM
 HORSE H
WHERE H.CODE_DEPARTURE = 1
 AND EXISTS (
 SELECT *
 FROM COVER
 WHERE COVER.CODE_FATHER = H.CODE_FATHER
 AND COVER.BYDATE > H.BIRTHDAY
 OFFSET 0 ROWS
)

Sub-query
 -> Skip N Records
 -> Filter
 -> Table "COVER" Access By ID
 -> Bitmap
 -> Index "FK_COVER_FATHER" Range Scan (full match)
Select Expression
 -> Aggregate
 -> Filter
 -> Table "HORSE" as "H" Access By ID
 -> Bitmap
 -> Index "FK_HORSE_DEPARTURE" Range Scan (full match)

 COUNT
=====================
 72199

Current memory = 554017824
Delta memory = 320
Max memory = 554284480
Elapsed time = 45.548 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 84145713

Chapter 8. Improvements in Optimizer

43

Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
COVER | | 75894621| | | |
HORSE | | 96021| | | |
--------------------------------+---------+---------+---------+---------+---------+

Not the best execution time, but in this case we at least got the result.

Thus, converting subqueries to ANY/SOME/IN/EXISTS into semi-join allows in some cases to
significantly speed up query execution, but at present this feature is still imperfect and therefore
disabled by default. In Firebird 6.0, they will try to add cost estimation for this feature, as well as fix
a number of other shortcomings. In addition, Firebird 6.0 plans to add conversion of subqueries
ALL/NOT IN/NOT EXISTS into anti-join.

In conclusion of the review of the execution of subqueries in IN/EXISTS, I would like to note that if
you have a query of the form

SELECT ...
FROM T1
WHERE <primary key> IN (SELECT field FROM T2 ...)

or

SELECT ...
FROM T1
WHERE EXISTS (SELECT ... FROM T2 WHERE T1.<primary key> = T2.field)

then such queries are almost always more efficient to execute as

SELECT ...
FROM
 T1
 JOIN (SELECT DISTINCT field FROM T2) tmp ON tmp.field = T1.<primary key>

Let me give you a clear example:

SELECT
 COUNT(*)
FROM
 HORSE H
WHERE H.CODE_HORSE IN (
 SELECT
 CODE_FATHER
 FROM COVER
 WHERE EXTRACT(YEAR FROM COVER.BYDATE) = 2022
)

Chapter 8. Improvements in Optimizer

44

Execution plan and statistics using Hash Join (semi)

Select Expression
 -> Aggregate
 -> Filter
 -> Hash Join (semi)
 -> Table "HORSE" as "H" Full Scan
 -> Record Buffer (record length: 41)
 -> Filter
 -> Table "COVER" Access By ID
 -> Bitmap
 -> Index "IDX_COVER_BYYEAR" Range Scan (full match)

 COUNT
=====================
 1616

Current memory = 554176768
Delta memory = 288
Max memory = 555531328
Elapsed time = 0.229 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 569683
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
COVER | | 6695| | | |
HORSE | 525875| | | | |
--------------------------------+---------+---------+---------+---------+---------+

Quite fast, but the HORSE table is read in full.

Execution plan and statistics with classic subquery execution

Sub-query
 -> Filter
 -> Filter
 -> Table "COVER" Access By ID
 -> Bitmap And
 -> Bitmap
 -> Index "FK_COVER_FATHER" Range Scan (full match)
 -> Bitmap
 -> Index "IDX_COVER_BYYEAR" Range Scan (full match)
Select Expression
 -> Aggregate
 -> Filter
 -> Table "HORSE" as "H" Full Scan

 COUNT
=====================
 1616

Chapter 8. Improvements in Optimizer

45

Current memory = 553472512
Delta memory = 288
Max memory = 553966592
Elapsed time = 6.862 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 2462726
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
COVER | | 1616| | | |
HORSE | 525875| | | | |
--------------------------------+---------+---------+---------+---------+---------+

Very slow. The HORSE table is full scan, and the subquery is executed multiple times — for each
record in the HORSE table.

And now a quick option with DISTINCT

SELECT
 COUNT(*)
FROM
 HORSE H
 JOIN (
 SELECT
 DISTINCT
 CODE_FATHER
 FROM COVER
 WHERE EXTRACT(YEAR FROM COVER.BYDATE) = 2022
) TMP ON TMP.CODE_FATHER = H.CODE_HORSE

Select Expression
 -> Aggregate
 -> Nested Loop Join (inner)
 -> Unique Sort (record length: 44, key length: 12)
 -> Filter
 -> Table "COVER" as "TMP COVER" Access By ID
 -> Bitmap
 -> Index "IDX_COVER_BYYEAR" Range Scan (full match)
 -> Filter
 -> Table "HORSE" as "H" Access By ID
 -> Bitmap
 -> Index "PK_HORSE" Unique Scan

 COUNT
=====================
 1616

Current memory = 554349728
Delta memory = 320

Chapter 8. Improvements in Optimizer

46

Max memory = 555531328
Elapsed time = 0.011 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 14954
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
COVER | | 6695| | | |
HORSE | | 1616| | | |
--------------------------------+---------+---------+---------+---------+---------+

No unnecessary readings, the query is executed very quickly. Hence the conclusion - always look at
the execution plan of subqueries in IN/EXISTS/ANY/SOME, and check alternative variants of writing
queries.

8.5. Preliminary evaluation of invariant predicates
In Firebird 5.0, if the predicate in WHERE is invariant (i.e., it does not depend on the fields of
datasets/tables), and it is FALSE, the optimizer will not read data from the dataset.

The simplest example is the always false condition 1=0. The idea of such condition is usually to
return 0 records from the query.

SELECT COUNT(*) FROM HORSE
WHERE 1=0;

In Firebird 4.0

Select Expression
 -> Aggregate
 -> Filter
 -> Table "HORSE" Full Scan

 COUNT
=====================
 0

Current memory = 2612572768
Delta memory = 0
Max memory = 2614392048
Elapsed time = 0.137 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 552573
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |

Chapter 8. Improvements in Optimizer

47

--------------------------------+---------+---------+---------+---------+---------+
HORSE | 519623| | | | |
--------------------------------+---------+---------+---------+---------+---------+

As you can see, Firebird 4.0 has read all records in table HORSE, to check that there is no record
which corresponds to the condition 1=0. Not very intelligent, right?

In Firebird 5.0

Select Expression
 -> Aggregate
 -> Filter (preliminary)
 -> Table "HORSE" Full Scan

 COUNT
=====================
 0

Current memory = 2580339248
Delta memory = 176
Max memory = 2582802608
Elapsed time = 0.005 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 0

As you can see, the statistics of the query shows 0 reads and 0 fetches, it means that Firebird 5.0 did
not read anything from disk and from cache – the optimizer of v5 has calculated the value of the
invariant predicate (1=0) before accessing table HORSE and excluded it.

The preliminary evaluation of invariant predicates is shown in the explain plan as Filter
(preliminary).

Practically, this feature is very useful for dynamically built queries. For example, we have the
following query with parameter :A.

SELECT * FROM HORSE
WHERE :A=1;

The parameter :A does not depend on the fields of dataset (table HORSE), so it can be preliminary
calculated, so we can “turn on” and “turn off” this query with this parameter.

Let’s consider more practical example: we need CTE to recursively find еру pedigree of the horse
up to the 5th generation.

WITH RECURSIVE
 R AS (
 SELECT
 CODE_HORSE,

Chapter 8. Improvements in Optimizer

48

 CODE_FATHER,
 CODE_MOTHER,
 0 AS DEPTH
 FROM HORSE
 WHERE CODE_HORSE = ?
 UNION ALL
 SELECT
 HORSE.CODE_HORSE,
 HORSE.CODE_MOTHER,
 HORSE.CODE_FATHER,
 R.DEPTH + 1
 FROM R
 JOIN HORSE ON HORSE.CODE_HORSE = R.CODE_FATHER
 WHERE R.DEPTH < 5
 UNION ALL
 SELECT
 HORSE.CODE_HORSE,
 HORSE.CODE_MOTHER,
 HORSE.CODE_FATHER,
 R.DEPTH + 1
 FROM R
 JOIN HORSE ON HORSE.CODE_HORSE = R.CODE_MOTHER
 WHERE R.DEPTH < 5
)
SELECT *
FROM R

Query’s execution statistics in Firebird 4.0 looks as below (plan is not shown purposely):

Current memory = 2612639872
Delta memory = 0
Max memory = 2614392048
Elapsed time = 0.027 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 610
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
HORSE | | 127| | | |
--------------------------------+---------+---------+---------+---------+---------+

Let’s compare with Firebird 5.0:

Select Expression
 -> Recursion
 -> Filter
 -> Table "HORSE" as "R HORSE" Access By ID
 -> Bitmap
 -> Index "PK_HORSE" Unique Scan
 -> Union

Chapter 8. Improvements in Optimizer

49

 -> Filter (preliminary)
 -> Filter
 -> Table "HORSE" as "R HORSE" Access By ID
 -> Bitmap
 -> Index "PK_HORSE" Unique Scan
 -> Filter (preliminary)
 -> Filter
 -> Table "HORSE" as "R HORSE" Access By ID
 -> Bitmap
 -> Index "PK_HORSE" Unique Scan

Current memory = 2580444832
Delta memory = 768
Max memory = 2582802608
Elapsed time = 0.024 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 252
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
HORSE | | 63| | | |
--------------------------------+---------+---------+---------+---------+---------+

As you can see, Firebird used 2x less reads of table HORSE, die to the fact that condition R.DEPTH < 5 is
invariant for the each step of recursive query.

8.6. Faster IN with list of constants
Until Firebird 5.0, the predicate IN with a list of constants is limited by 1500 elements, and it was
processed recursively, with transformation to the list of OR conditions.

It means that in pre-v5,

F IN (V1, V2, ... VN)

is actually transformed to

(F = V1) OR (F = V2) OR (F = VN)

Starting with Firebird 5.0 the processing of IN is linear, the of 1500 elements is increased to 65535.

In Firebird 5.0, list of constants in IN is cached as binary search tree to speed up the comparison

Let’s see the following example:

SELECT
 COUNT(*)

Chapter 8. Improvements in Optimizer

50

FROM COVER
WHERE CODE_COVERRESULT+0 IN (151, 152, 156, 158, 159, 168, 170, 200, 202)

In this case we added CODE_COVERRESULT+0 purposely to disable usage of index.

In Firebird 4.0

Select Expression
 -> Aggregate
 -> Filter
 -> Table "COVER" Full Scan

 COUNT
=====================
 45231

Current memory = 2612795072
Delta memory = -288
Max memory = 2614392048
Elapsed time = 0.877 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 738452
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
COVER | 713407| | | | |
--------------------------------+---------+---------+---------+---------+---------+

In Firebird 5.0

Select Expression
 -> Aggregate
 -> Filter
 -> Table "COVER" Full Scan

 COUNT
=====================
 45231

Current memory = 2580573216
Delta memory = 224
Max memory = 2582802608
Elapsed time = 0.332 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 743126
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |

Chapter 8. Improvements in Optimizer

51

--------------------------------+---------+---------+---------+---------+---------+
COVER | 713407| | | | |
--------------------------------+---------+---------+---------+---------+---------+

As you can see, even for small list in this example, and despite the fact that number of reads of
table COVER did not change, the query is 2.5x faster.

If list is very long, or if predicate IN is not selective, index scanning will use search of groups with
the pointer of the same level (i.e., horizontal), and not the search of each group from the root (i.e.,
vertical) — it means that it will use the single index scan for all values in the IN list.

See the following example:

SELECT
 COUNT(*)
FROM LAB_LINE
WHERE CODE_LABTYPE IN (4, 5)

The result in Firebird 4.0:

Select Expression
 -> Aggregate
 -> Filter
 -> Table "LAB_LINE" Access By ID
 -> Bitmap Or
 -> Bitmap
 -> Index "FK_LAB_LINE_LABTYPE" Range Scan (full match)
 -> Bitmap
 -> Index "FK_LAB_LINE_LABTYPE" Range Scan (full match)

 COUNT
=====================
 985594

Current memory = 2614023968
Delta memory = 0
Max memory = 2614392048
Elapsed time = 0.361 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 992519
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
LAB_LINE | | 985594| | | |
--------------------------------+---------+---------+---------+---------+---------+

In Firebird 5.0:

Chapter 8. Improvements in Optimizer

52

Select Expression
 -> Aggregate
 -> Filter
 -> Table "LAB_LINE" Access By ID
 -> Bitmap
 -> Index "FK_LAB_LINE_LABTYPE" List Scan (full match)

 COUNT
=====================
 985594

Current memory = 2582983152
Delta memory = 176
Max memory = 2583119072
Elapsed time = 0.306 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 993103
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete |
--------------------------------+---------+---------+---------+---------+---------+
LAB_LINE | | 985594| | | |
--------------------------------+---------+---------+---------+---------+---------+

Though the time of query is not changed, the plan is different: instead of 2 Range Scan and bitmap
join through OR, Firebird 5 uses the new access method with one-step index list scan, namely List
Scan in the explained plan.

8.7. Optimizer strategy ALL ROWS vs FIRST ROWS
There are 2 strategies to optimize queries:

• FIRST ROWS — when optimizer builds query plan to return as soon as possible the first rows of
the resulting dataset;

• ALL ROWS — when optimizer builds query plan to return all rows of the resulting dataset as
soon as possible.

Until Firebird 5.0 these strategies also existed, but there was no way to control which one to use.

The default strategy was ALL ROWS, however, in case of clause FIRST …, ROWS … or FETCH FIRST n
ROWS, the optimizer had used the strategy to FIRST ROWS. Also, for subselects in IN and in EXISTS it also
used strategy FIRST ROWS.

Starting with Firebird 5.0, by default will be used the optimization strategy specified in the
parameter OptimizeForFirstRows of firebird.conf or database.conf.

OptimizeForFirstRows = false means strategy ALL ROWS, OptimizeForFirstRows = true means FIRST
ROWS.

Chapter 8. Improvements in Optimizer

53

It is possible to change the optimization strategy for the current session (connection) with the
following command:

SET OPTIMIZE FOR {FIRST | ALL} ROWS

It can be useful for reporting and BI applications.

Also, the strategy can be set on the level of the SQL command with clause OPTIMIZE FOR.

SELECT query with clause OPTIMIZE FOR has the following syntax:

SELECT ...
FROM [...]
[WHERE ...]
[...]
[OPTIMIZE FOR {FIRST | ALL} ROWS]

Clause OPTIMIZE FOR should be specified in the end of SELECT query. In PSQL it should be set right
before the clause INTO.

A bit of internals behind optimization strategies

Datasets in the query can be conveyors or buffered:

• Conveyor dataset returns records during the reading process of its input,

• Buffered dataset need to read all records from input, and only after
competition it can return the first row.

If active strategy is FIRST ROWS, the optimizer will try to avoid buffered datasets
(i.e., SORT or HASH JOIN).

Let’s see how the choice of the optimization strategy changes the query plan — for this let’s use
clause OPTIMIZE FOR.

The example of query and plan with optimizer strategy ALL ROWS:

SELECT
 HORSE.NAME AS HORSENAME,
 SEX.NAME AS SEXNAME,
 COLOR.NAME AS COLORNAME
FROM
 HORSE
 JOIN SEX ON SEX.CODE_SEX = HORSE.CODE_SEX
 JOIN COLOR ON COLOR.CODE_COLOR = HORSE.CODE_COLOR
ORDER BY HORSE.NAME
OPTIMIZE FOR ALL ROWS

Select Expression

Chapter 8. Improvements in Optimizer

54

 -> Sort (record length: 876, key length: 304)
 -> Filter
 -> Hash Join (inner)
 -> Nested Loop Join (inner)
 -> Table "COLOR" Full Scan
 -> Filter
 -> Table "HORSE" Access By ID
 -> Bitmap
 -> Index "FK_HORSE_COLOR" Range Scan (full match)
 -> Record Buffer (record length: 113)
 -> Table "SEX" Full Scan

The example of query and plan with optimizer strategy FIRST ROWS:

SELECT
 HORSE.NAME AS HORSENAME,
 SEX.NAME AS SEXNAME,
 COLOR.NAME AS COLORNAME
FROM
 HORSE
 JOIN SEX ON SEX.CODE_SEX = HORSE.CODE_SEX
 JOIN COLOR ON COLOR.CODE_COLOR = HORSE.CODE_COLOR
ORDER BY HORSE.NAME
OPTIMIZE FOR FIRST ROWS

Select Expression
 -> Nested Loop Join (inner)
 -> Table "HORSE" Access By ID
 -> Index "HORSE_IDX_NAME" Full Scan
 -> Filter
 -> Table "SEX" Access By ID
 -> Bitmap
 -> Index "PK_SEX" Unique Scan
 -> Filter
 -> Table "COLOR" Access By ID
 -> Bitmap
 -> Index "PK_COLOR" Unique Scan

As you can see, in the first case, the optimizer has chosen the HASH JOIN and SORT to return all
records of the query as soon as possible.

In the second case, the optimizer has chosen the index (ORDER index) and join with NESTED LOOP,
because this plan will return the first rows as fast as possible.

8.8. Improved plan output
Queries plans are important for the understanding of the performance of queries, and in Firebird 5
we have better representation of explain plan’s elements.

As you know, there are 2 types of plans: legacy and explained.

Chapter 8. Improvements in Optimizer

55

Now in the output of explain plan we can see user’s SELECTs (shown as “select expressions”),
declared PSQL cursors and sub-queries.

Both legacy and explain plans now includes the information of cursor position (line/column) inside
PSQL module.

To see the difference, let’s compare plan’s outputs for several Firebird 4.0 and Firebird 5.0.

Let’s start with the query with the subquery:

SELECT *
FROM HORSE
WHERE EXISTS(SELECT * FROM COVER
 WHERE COVER.CODE_FATHER = HORSE.CODE_HORSE)

The explained plan in Firebird 4.0 will look like this:

Select Expression
 -> Filter
 -> Table "COVER" Access By ID
 -> Bitmap
 -> Index "FK_COVER_FATHER" Range Scan (full match)
Select Expression
 -> Filter
 -> Table "HORSE" Full Scan

In Firebird the plan will look like the following:

Sub-query
 -> Filter
 -> Table "COVER" Access By ID
 -> Bitmap
 -> Index "FK_COVER_FATHER" Range Scan (full match)
Select Expression
 -> Filter
 -> Table "HORSE" Full Scan

Now in the plan you can clearly see where the main query is and where the subquery is.

Now let’s compare how the plan is displayed for PSQL, for example in the statement EXECUTE BLOCK:

EXECUTE BLOCK
RETURNS (
 CODE_COLOR INT,
 CODE_BREED INT
)
AS
BEGIN
 FOR
 SELECT CODE_COLOR

Chapter 8. Improvements in Optimizer

56

 FROM COLOR
 INTO CODE_COLOR
 DO
 SUSPEND;

 FOR
 SELECT CODE_BREED
 FROM BREED
 INTO CODE_BREED
 DO
 SUSPEND;
END

In Firebird 4.0, both legacy and explain plans will be printed for each cursor within a block,
without additional details, just one after the other.

PLAN (COLOR NATURAL)
PLAN (BREED NATURAL)

Select Expression
 -> Table "COLOR" Full Scan
Select Expression
 -> Table "BREED" Full Scan

In Firebird 5.0, each cursor plan will be preceded by the number of the column and row where the
cursor is declared.

-- line 8, column 3
PLAN (COLOR NATURAL)
-- line 15, column 3
PLAN (BREED NATURAL)

Select Expression (line 8, column 3)
 -> Table "COLOR" Full Scan
Select Expression (line 15, column 3)
 -> Table "BREED" Full Scan

Now let’s compare the output of explain plans if the cursor is declared explicitly.

EXECUTE BLOCK
RETURNS (
 CODE_COLOR INT
)
AS
 DECLARE C1 CURSOR FOR (
 SELECT CODE_COLOR
 FROM COLOR
);

Chapter 8. Improvements in Optimizer

57

 DECLARE C2 SCROLL CURSOR FOR (
 SELECT CODE_COLOR
 FROM COLOR
);
BEGIN
 SUSPEND;
END

For Firebird 4.0 the plan will be like this:

Select Expression
 -> Table "COLOR" as "C1 COLOR" Full Scan
Select Expression
 -> Record Buffer (record length: 25)
 -> Table "COLOR" as "C2 COLOR" Full Scan

The plan gives the impression that the COLOR table has an alias of C1, although this is not the case.

In Firebird 5.0 the plan will be much clearer:

Cursor "C1" (line 6, column 3)
 -> Table "COLOR" as "C1 COLOR" Full Scan
Cursor "C2" (scrollable) (line 11, column 3)
 -> Record Buffer (record length: 25)
 -> Table "COLOR" as "C2 COLOR" Full Scan

Firstly, it is clear that we have cursors C1 and C2 declared in the block.

Secondly, an additional “scrollable” attribute has been introduced for a bidirectional cursor.

8.9. How to get stored procedure plans
Until Firebird 3.0, the engine had shown plans for stored procedures as a compilation of plans of
internal queries, and it was often misleading. In Firebird 3.0, the plan for stored procedures is
always shown as NATURAL, and it is also not the best solution.

In Firebird 5 there is better option.

If we will try to see the plan for the stored procedure for the following query, it will not return
desired details:

SELECT *
FROM SP_PEDIGREE(?, 5, 1)

Select Expression
 -> Procedure "SP_PEDIGREE" Scan

Chapter 8. Improvements in Optimizer

58

As expected, the top-level query plan is displayed without the details of the cursor plans inside the
stored procedure, like in Firebird 3-4.

Firebird 5.0 has cache of the compiled queries, and monitoring table MON$COMPILED_STATEMENTS can
show the plan for compiled queries, including stored procedures.

Once we have prepared query with stored procedure, this procedure will be cached, and its plan
can be viewed with the following query:

SELECT CS.MON$EXPLAINED_PLAN
FROM MON$COMPILED_STATEMENTS CS
WHERE CS.MON$OBJECT_NAME = 'SP_PEDIGREE'
 AND CS.MON$OBJECT_TYPE = 5
ORDER BY CS.MON$COMPILED_STATEMENT_ID DESC
FETCH FIRST ROW ONLY

Cursor "V" (scrollable) (line 19, column 3)
 -> Record Buffer (record length: 132)
 -> Nested Loop Join (inner)
 -> Window
 -> Window Partition
 -> Record Buffer (record length: 82)
 -> Sort (record length: 84, key length: 12)
 -> Window Partition
 -> Window Buffer
 -> Record Buffer (record length: 41)
 -> Procedure "SP_HORSE_INBRIDS" as "V H_INB SP_HORSE_INBRIDS" Scan
 -> Filter
 -> Table "HUE" as "V HUE" Access By ID
 -> Bitmap
 -> Index "HUE_IDX_ORDER" Range Scan (full match)
Select Expression (line 44, column 3)
 -> Recursion
 -> Filter
 -> Table "HORSE" as "PEDIGREE HORSE" Access By ID
 -> Bitmap
 -> Index "PK_HORSE" Unique Scan
 -> Union
 -> Filter (preliminary)
 -> Filter
 -> Table "HORSE" as "PEDIGREE HORSE" Access By ID
 -> Bitmap
 -> Index "PK_HORSE" Unique Scan
 -> Filter (preliminary)
 -> Filter
 -> Table "HORSE" as "PEDIGREE HORSE" Access By ID
 -> Bitmap
 -> Index "PK_HORSE" Unique Scan

Also, plans for stored procedures will be shown in the trace if configuration contains the line
log_procedure_compile = true.

Chapter 8. Improvements in Optimizer

59

Chapter 9. New features in SQL language

9.1. Support for WHEN NOT MATCHED BY SOURCE clause in
MERGE statement
The MERGE statement merges records from the source table and the target table (or updatable view).

During execution of a MERGE statement, the source records are read and then INSERT, UPDATE or DELETE
is performed on the target table depending on the conditions.

Syntax of MERGE statement

MERGE
 INTO target [[AS] target_alias]
 USING <source> [[AS] source_alias]
 ON <join condition>
 <merge when> [<merge when> ...]
 [<plan clause>]
 [<order by clause>]
 [<returning clause>]

<source> ::= tablename | (<select_stmt>)

<merge when> ::=
 <merge when matched>
 | <merge when not matched by target>
 | <merge when not matched by source>

<merge when matched> ::=
 WHEN MATCHED [AND <condition>]
 THEN { UPDATE SET <assignment_list> | DELETE }

<merge when not matched by target> ::=
 WHEN NOT MATCHED [BY TARGET] [AND <condition>]
 THEN INSERT [<left paren> <column_list> <right paren>]
 VALUES <left paren> <value_list> <right paren>

<merge when not matched by source> ::=
 WHEN NOT MATCHED BY SOURCE [AND <condition>] THEN
 { UPDATE SET <assignment list> | DELETE }

Firebird 5.0 introduced conditional branches <merge when not matched by source>, which allow you
to update or delete records from the target table if they are not present in the data source.

Now the MERGE statement is a truly universal tool for any modifications of the target table for a
certain set of data.

The data source can be a table, view, stored procedure, or derived table. When a MERGE statement is
executed, a join is made between the source (USING) and the target table. The join type depends on
the presence of WHEN NOT MATCHED clause:

Chapter 9. New features in SQL language

60

• <merge when not matched by target> and <merge when not matched by source> — FULL JOIN

• <merge when not matched by source> — RIGHT JOIN

• <merge when not matched by target> — LEFT JOIN

• only <merge when matched> — INNER JOIN

The action on the target table, as well as the condition under which it is performed, is described in
the WHEN clause.

It is possible to have several clauses WHEN MATCHED, WHEN NOT MATCHED [BY TARGET] and WHEN NOT
MATCHED BY SOURCE.

If the condition in the WHEN clause is not met, then Firebird skips it and moves on to the next clause.

This will continue until the condition for one of the WHEN clauses is met. In this case, the action
associated with the WHEN clause is performed and the next record of the join result between the
source (USING) and the target table is moved to. Only one action is performed for each result record
of the join.

9.1.1. WHEN MATCHED

Specifies that all target rows that match the rows returned by the <source> ON <join condition>
expression and satisfy additional search conditions are updated (UPDATE clause) or deleted (DELETE
clause) according to the clause <merge when matched>.

Multiple WHEN MATCHED clauses are allowed. If more than one WHEN MATCHED clause is specified, all of
them should be supplemented with additional search terms except the last one.

A MERGE statement cannot update the same row more than once, or it cannot update and delete the
same row at the same time.

9.1.2. WHEN NOT MATCHED [BY TARGET]

Specifies that all target rows that do not match the rows returned by the <source> ON <join
condition> expression and satisfy additional search conditions are inserted into the target table
(INSERT clause) according to the clause <merge when not matched by target>.

Multiple WHEN NOT MATCHED [BY TARGET] clauses are allowed. If more than one WHEN NOT MATCHED [BY
TARGET] clause is specified, then all of them should be supplemented with additional search terms,
except for the last one.

9.1.3. WHEN NOT MATCHED BY SOURCE

Specifies that all target rows that do not match the rows returned by the <source> ON <join
condition> expression and satisfy additional search conditions (UPDATE clause) or are deleted (DELETE
clause) according to the clause <merge when not matched by source>.

The WHEN NOT MATCHED BY SOURCE clause became available in Firebird 5.0.

Multiple WHEN NOT MATCHED BY SOURCE clauses are allowed. If more than one WHEN NOT MATCHED BY

Chapter 9. New features in SQL language

61

SOURCE clause is specified, all of them should be supplemented with additional search terms except
the last one.

In the SET list of an UPDATE clause, it makes no sense to use expressions that refer to
<source>, since no entries from match target entries.

9.1.4. Example of using MERGE with clause WHEN NOT MATCHED BY SOURCE

Let’s say you have a price list in the tmp_price temporary table and you need to update the current
price so that:

• if the product is not in the current price list, then add it;

• if the product is in the current price list, then update the price for it;

• if the product is included in the current price list. but it is not in the new one, then delete this
price line.

All these actions can be done in the single SQL command:

MERGE INTO price
USING tmp_price
ON price.good_id = tmp_price.good_id
WHEN NOT MATCHED
 -- add if it wasn't there
 THEN INSERT (good_id, name, cost)
 VALUES (tmp_price.good_id, tmp_price.name, tmp_price.cost)
WHEN MATCHED AND price.cost <> tmp_price.cost THEN
 -- update the price if the product is in the new price list and the price is different
 UPDATE SET cost = tmp_price.cost
WHEN NOT MATCHED BY SOURCE
 -- if there is no product in the new price list, then we remove it from the current price
list
 DELETE;

In this example, instead of the temporary table tmp_price, there can be an
arbitrarily complex SELECT query or stored procedure. Please note, that since both
the WHEN NOT MATCHED [BY TARGET] and WHEN NOT MATCHED BY SOURCE clauses are
present, the join between the target table and the data source will be done using a
FULL JOIN. In the current version of Firebird FULL JOIN will not use indices on both
the right and left, and will be slow.

9.2. Clause SKIP LOCKED
Firebird 5.0 introduced the SKIP LOCKED clause, which can be used in SELECT .. WITH LOCK, UPDATE,
and DELETE statements.

Using this clause causes the engine to skip records locked by other transactions instead of waiting
for them, or cause update conflict errors.

Chapter 9. New features in SQL language

62

Using SKIP LOCKED is useful for implementing work queues, in which one or more processes submit
work to a table and emit an event, while worker (executor) threads listen for events and
read/remove items from the table. Using SKIP LOCKED, multiple workers can receive exclusive jobs
from a table without conflicts.

SELECT
 [FIRST ...]
 [SKIP ...]
 FROM <sometable>
 [WHERE ...]
 [PLAN ...]
 [ORDER BY ...]
 [{ ROWS ... } | {OFFSET ...} | {FETCH ...}]
 [FOR UPDATE [OF ...]]
 [WITH LOCK [SKIP LOCKED]]

UPDATE <sometable>
 SET ...
 [WHERE ...]
 [PLAN ...]
 [ORDER BY ...]
 [ROWS ...]
 [SKIP LOCKED]
 [RETURNING ...]

DELETE FROM <sometable>
 [WHERE ...]
 [PLAN ...]
 [ORDER BY ...]
 [ROWS ...]
 [SKIP LOCKED]
 [RETURNING ...]

When using the SKIP LOCKED clause, locked records are first skipped and then
FIRST/SKIP/ROWS/OFFSET/FETCH restrictsions are applied to the remaining
records.

Example:

• Create table and trigger:

create table emails_queue (
 subject varchar(60) not null,
 text blob sub_type text not null
);

set term !;

create trigger emails_queue_ins after insert on emails_queue

Chapter 9. New features in SQL language

63

as
begin
 post_event('EMAILS_QUEUE');
end!

set term ;!

• Sending a message by an application

insert into emails_queue (subject, text)
values ('E-mail subject', 'E-mail text...');

commit;

• Client application

-- The client application can check table to the EMAILS_QUEUE event,
-- to send emails using this command:

delete from emails_queue
 rows 10
 skip locked
 returning subject, text;

More than one instance of an application can be running, for example for load balancing.

The use of SKIP LOCKED for organizing queues will be discussed in in the separate
article.

9.3. Support for returning multiple records by
operators with clause RETURNING
Since Firebird 5.0, client-side modification statements INSERT .. SELECT, UPDATE, DELETE, UPDATE OR
INSERT and MERGE, with clause RETURNING will return a cursor: it means that they are able to return
multiple rows instead of throwing the "multiple rows in singleton select" error as previously.

These queries are now described as isc_info_sql_stmt_select, whereas in previous versions they
were described as isc_info_sql_stmt_exec_procedure.

Singleton statements INSERT .. VALUES, and positioned statements UPDATE and DELETE (those
containing a WHERE CURRENT OF clause) retain the existing behavior and are described as
isc_info_sql_stmt_exec_procedure.

However, all of these statements, if used in PSQL, and if the RETURNING clause is used, are still treated
as singletons.

Examples of modifying statements containing RETURNING and returning a cursor:

Chapter 9. New features in SQL language

64

INSERT INTO dest(name, val)
SELECT desc, num + 1 FROM src WHERE id_parent = 5
RETURNING id, name, val;

UPDATE dest
SET a = a + 1
RETURNING id, a;

DELETE FROM dest
WHERE price < 0.52
RETURNING id;

MERGE INTO PRODUCT_INVENTORY AS TARGET
USING (
 SELECT
 SL.ID_PRODUCT,
 SUM(SL.QUANTITY)
 FROM
 SALES_ORDER_LINE SL
 JOIN SALES_ORDER S ON S.ID = SL.ID_SALES_ORDER
 WHERE S.BYDATE = CURRENT_DATE
 AND SL.ID_PRODUCT = :ID_PRODUCT
 GROUP BY 1
) AS SRC(ID_PRODUCT, QUANTITY)
ON TARGET.ID_PRODUCT = SRC.ID_PRODUCT
WHEN MATCHED AND TARGET.QUANTITY - SRC.QUANTITY <= 0 THEN
 DELETE
WHEN MATCHED THEN
 UPDATE SET
 TARGET.QUANTITY = TARGET.QUANTITY - SRC.QUANTITY,
 TARGET.BYDATE = CURRENT_DATE
RETURNING OLD.QUANTITY, NEW.QUANTITY, SRC.QUANTITY;

9.4. Partial indices
In Firebird 5.0, when creating an index, it became possible to specify an optional WHERE clause,
which specifies a search condition that limits the subset of table records to be indexed. Such indices
are called partial indices. The search condition must contain one or more table columns.

The partial index definition may include a UNIQUE specification. In this case, each key in the index
must be unique. This allows you to ensure uniqueness for a certain subset of table rows.

The definition of a partial index can also include a COMPUTED BY clause so that the partial index can
be computed.

So the complete syntax for creating an index is as follows:

CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]]
INDEX indexname ON tablename
{(<column_list>) | COMPUTED [BY] (<value_expression>)}
[WHERE <search_condition>]

Chapter 9. New features in SQL language

65

<column_list> ::= col [, col ...]

The optimizer can only use a partial index in the following cases:

• the WHERE clause includes exactly the same logical expression as the one defined for the index;

• the search condition defined for the index contains Boolean expressions combined with an OR,
and one of them is explicitly included in the WHERE clause;

• The search condition defined for the index specifies IS NOT NULL, and the WHERE clause includes
an expression for the same field that is known to ignore NULL.

If a regular index and a partial index exist for the same set of fields, the optimizer will choose the
regular index even if the WHERE clause includes the same expression as defined in the partial
index.

The reason for this behavior is that the regular index has better selectivity than the partial index.

But there are exception to this rule: using predicates with poor selectivity on indexed fields, such as
<>, IS DISTINCT FROM, or IS NOT NULL, provided that the predicate is used in a partial index.

Partial indices cannot be used to constrain a primary key or a foreign key: USING
INDEX clause cannot specify a partial index definition.

Let’s see when partial indices are useful.

Example 1. Partial uniqueness

Let’s say we have a table storing a person’s email address.

CREATE TABLE MAN_EMAILS (
 CODE_MAN_EMAIL BIGINT GENERATED BY DEFAULT AS IDENTITY,
 CODE_MAN BIGINT NOT NULL,
 EMAIL VARCHAR(50) NOT NULL,
 DEFAULT_FLAG BOOLEAN DEFAULT FALSE NOT NULL,
 CONSTRAINT PK_MAN_EMAILS PRIMARY KEY(CODE_MAN_EMAIL),
 CONSTRAINT FK_EMAILS_REF_MAN FOREIGN KEY(CODE_MAN) REFERENCES MAN(CODE_MAN)
);

One person can have many email addresses, but only one can be the default address. A regular
unique index or restriction will not work in this case, since in this case we will be limited to
only two addresses.

Here we can use the partial unique index:

CREATE UNIQUE INDEX IDX_UNIQUE_DEFAULT_MAN_EMAIL
ON MAN_EMAILS(CODE_MAN) WHERE DEFAULT_FLAG IS TRUE;

Thus, for one person we allow as many addresses as desired with DEFAULT_FLAG=FALSE and only

Chapter 9. New features in SQL language

66

one address with DEFAULT_FLAG=TRUE.

Partial indices can be used simply to make the index more compact.

Example 2. Reducing the index size

Suppose you have a horse table HORSE in your database and it has the IS_ANCESTOR field, which
is used to indicate whether the horse is the ancestor of a line or family. Obviously, there are
hundreds of times fewer ancestors than other horses — see the result of the query below:

SELECT
 COUNT(*) FILTER(WHERE IS_ANCESTOR IS TRUE) AS CNT_ANCESTOR,
 COUNT(*) FILTER(WHERE IS_ANCESTOR IS FALSE) AS CNT_OTHER
FROM HORSE

 CNT_ANCESTOR CNT_OTHER
===================== =====================
 1426 518197

The goal is to quickly obtain a list of ancestors. From the above statistics it is also obvious that
for the IS_ANCESTOR IS FALSE option, the use of index is practically useless.

Let’s try to create a regular index:

CREATE INDEX IDX_HORSE_ANCESTOR ON HORSE(IS_ANCESTOR);

But in this case, such an index will be redundant. Let’s look at its statistics using gstat tool:

 Index IDX_HORSE_ANCESTOR (26)
 Root page: 163419, depth: 2, leaf buckets: 159, nodes: 519623
 Average node length: 4.94, total dup: 519621, max dup: 518196
 Average key length: 2.00, compression ratio: 0.50
 Average prefix length: 1.00, average data length: 0.00
 Clustering factor: 9809, ratio: 0.02
 Fill distribution:
 0 - 19% = 0
 20 - 39% = 1
 40 - 59% = 0
 60 - 79% = 0
 80 - 99% = 158

Instead of a regular index, we can create a partial index (the previous one must be deleted):

CREATE INDEX IDX_HORSE_ANCESTOR ON HORSE(IS_ANCESTOR) WHERE IS_ANCESTOR IS TRUE;

Let’s compare the statistics using gstat tool:

Chapter 9. New features in SQL language

67

 Index IDX_HORSE_ANCESTOR (26)
 Root page: 163417, depth: 1, leaf buckets: 1, nodes: 1426
 Average node length: 4.75, total dup: 1425, max dup: 1425
 Average key length: 2.00, compression ratio: 0.50
 Average prefix length: 1.00, average data length: 0.00
 Clustering factor: 764, ratio: 0.54
 Fill distribution:
 0 - 19% = 0
 20 - 39% = 0
 40 - 59% = 1
 60 - 79% = 0
 80 - 99% = 0

As you can see, the partial index is much more compact — there are 1426 nodes in partial
index instead 519623 in regular. Let’s check that it can be used to obtain ancestors:

SELECT COUNT(*)
FROM HORSE
WHERE IS_ANCESTOR IS TRUE;

Select Expression
 -> Aggregate
 -> Filter
 -> Table "HORSE" Access By ID
 -> Bitmap
 -> Index "IDX_HORSE_ANCESTOR" Full Scan

 COUNT
=====================
 1426

Current memory = 556868928
Delta memory = 176
Max memory = 575376064
Elapsed time = 0.007 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 2192
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete | Backout | Purge | Expunge |
--------------------------------+---------+---------+---------+---------+---------+---------+---------+---------+
HORSE | | 1426| | | | | | |
--------------------------------+---------+---------+---------+---------+---------+---------+---------+---------+

Please note that if you specify WHERE IS_ANCESTOR or WHERE IS_ANCESTOR = TRUE in the query, the
index will not be used. It is necessary that the expression specified to filter the index
completely matches the expression in the WHERE of your query.

Another case when partial indices can be useful is when using them with non-selective predicates.

Chapter 9. New features in SQL language

68

Example 3. Using partial indices with non-selective predicates

Suppose we need to get all dead horses for which the date of death is known. A horse is
definitely dead if it has a date of death, but it often happens that it is not listed or is simply
unknown. Moreover, the number of unknown dates of death is much greater than the known
ones. To do this, we will write the following query:

SELECT COUNT(*)
FROM HORSE
WHERE DEATHDATE IS NOT NULL;

We want to get this list as quickly as possible, so we’ll try to create an index on the DEATHDATE
field.

CREATE INDEX IDX_HORSE_DEATHDATE
ON HORSE(DEATHDATE);

Now let’s try to run the query above and look at its plan and statistics:

Select Expression
 -> Aggregate
 -> Filter
 -> Table "HORSE" Full Scan

 COUNT
=====================
 16234

Current memory = 2579550800
Delta memory = 176
Max memory = 2596993840
Elapsed time = 0.196 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 555810
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete | Backout | Purge | Expunge |
--------------------------------+---------+---------+---------+---------+---------+---------+---------+---------+
HORSE | 519623| | | | | | | |
--------------------------------+---------+---------+---------+---------+---------+---------+---------+---------+

As you can see, it was not possible to use the index.

The reason is that the predicates IS NOT NULL, <>, IS DISTINCT FROM are low-selective.

Currently, Firebird does not have histograms with the distribution of index key values, and
therefore the distribution is assumed to be uniform. With a uniform distribution, there is no
point in using an index for such predicates, which is what is done.

Now let’s try to delete the previously created index and create a partial index instead:

Chapter 9. New features in SQL language

69

DROP INDEX IDX_HORSE_DEATHDATE;

CREATE INDEX IDX_HORSE_DEATHDATE
ON HORSE(DEATHDATE) WHERE DEATHDATE IS NOT NULL;

And let’s try to repeat the request above:

Select Expression
 -> Aggregate
 -> Filter
 -> Table "HORSE" Access By ID
 -> Bitmap
 -> Index "IDX_HORSE_DEATHDATE" Full Scan

 COUNT
=====================
 16234

Current memory = 2579766848
Delta memory = 176
Max memory = 2596993840
Elapsed time = 0.017 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 21525
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete | Backout | Purge | Expunge |
--------------------------------+---------+---------+---------+---------+---------+---------+---------+---------+
HORSE | | 16234| | | | | | |
--------------------------------+---------+---------+---------+---------+---------+---------+---------+---------+

As you can see, the optimizer managed to use our index. But the most interesting thing is that
our index will continue to work with other date comparison predicates (but it will not work
for IS NULL).

See example below:

SELECT COUNT(*)
FROM HORSE
WHERE DEATHDATE = DATE '2005-01-01';

Select Expression
 -> Aggregate
 -> Filter
 -> Table "HORSE" Access By ID
 -> Bitmap
 -> Index "IDX_HORSE_DEATHDATE" Range Scan (full match)

 COUNT
=====================
 190

Current memory = 2579872992
Delta memory = 192

Chapter 9. New features in SQL language

70

Max memory = 2596993840
Elapsed time = 0.004 sec
Buffers = 153600
Reads = 0
Writes = 0
Fetches = 376
Per table statistics:
--------------------------------+---------+---------+---------+---------+---------+---------+---------+---------+
 Table name | Natural | Index | Insert | Update | Delete | Backout | Purge | Expunge |
--------------------------------+---------+---------+---------+---------+---------+---------+---------+---------+
HORSE | | 190| | | | | | |
--------------------------------+---------+---------+---------+---------+---------+---------+---------+---------+

The optimizer in this case realized that the IS NOT NULL filter condition in the partial index
covers any other predicates that do not compare to NULL.

It is important to note that if you specify the condition FIELD > 2 in the partial index, and the query
contains the search condition FIELD > 1, then despite the fact that any number greater than 2 is also
greater than 1, the partial index will not be used. The optimizer is not smart enough to derive this
equivalence condition.

9.5. Functions UNICODE_CHAR and UNICODE_VAL
Firebird 2.1 introduced a pair of functions ASCII_CHAR — returning a character by its code in the
ASCII table, and ASCII_VAL — returning the code in the ASCII table by character. These functions
only apply to single-byte encodings; there is nothing similar for UTF-8. Firebird 5.0 added two more
functions that work with multibyte encodings:

UNICODE_CHAR (number)

UNICODE_VAL (string)

The UNICODE_CHAR function returns the UNICODE character for the given code point.

The UNICODE_VAL function returns the UTF-32 code point for the first character in a string. For an
empty string, 0 is returned.

SELECT
 UNICODE_VAL(UNICODE_CHAR(0x1F601)) AS CP_VAL,
 UNICODE_CHAR(0x1F601) AS CH
FROM RDB$DATABASE

9.6. Query expressions in parentheses
In 5.0, the DML syntax was expanded to allow the use of a query expression within parentheses
(SELECT, including order by, offset and fetch clauses, but without with clause), where previously
only the query specification was allowed (SELECT without clauses with, order by, offset and fetch).

This allows you to write clearer queries, especially in UNION statements, and provides greater

Chapter 9. New features in SQL language

71

compatibility with statements generated by some ORMs.

Using query expressions in parentheses is not free from the Firebird engine’s point
of view, since they require additional query context compared to a simple query
specification. The maximum number of request contexts in a statement is limited
to 255.

Example:

(
 select emp_no, salary, 'lowest' as type
 from employee
 order by salary asc
 fetch first row only
)
union all
(
 select emp_no, salary, 'highest' as type
 from employee
 order by salary desc
 fetch first row only
);

9.7. Improved Literals

9.7.1. Full syntax of string literals

The character string literal syntax has been changed to support full standard SQL syntax. This
means that the literal can be “interrupted” by spaces or comments. This can be used, for example,
to split a long literal across multiple lines or to provide inline comments.

String literal syntax according to ISO/IEC 9075-2:2016 SQL - Part 2: Foundation

<character string literal> ::=
 [<introducer> <character set specification>]
 <quote> [<character representation>...] <quote>
 [{ <separator> <quote> [<character representation>...] <quote> }...]

<separator> ::=
 { <comment> | <white space> }...

Example:

-- spaces between literals
select 'ab'
 'cd'
from RDB$DATABASE;
-- output: 'abcd'

Chapter 9. New features in SQL language

72

-- comment and spaces between literals
select 'ab' /* comment */ 'cd'
from RDB$DATABASE;
-- output: 'abcd'

9.7.2. Complete syntax for binary literals

The syntax for binary string literals has been changed to support full standard SQL syntax. This
means that the literal can contain spaces to separate hexadecimal characters and can be
“interrupted” by spaces or comments. This can be used, for example, to make a hexadecimal string
more readable by grouping characters, or to split a long literal over multiple lines, or to provide
inline comments.

The binary literal syntax is as per ISO/IEC 9075-2:2016 SQL - Part 2: Foundation

<binary string literal> ::=
 {X|x} <quote> [<space>...] [{ <hexit> [<space>...] <hexit> [<space>...] }...
] <quote>
 [{ <separator> <quote> [<space>...] [{ <hexit> [<space>...]
 <hexit> [<space>...] }...] <quote> }...]

Examples:

-- Группировка по байтам (пробелы внутри литерала)
select _win1252 x'42 49 4e 41 52 59'
from RDB$DATABASE;
-- output: BINARY

-- пробелы между литералами
select _win1252 x'42494e'
 '415259'
from RDB$DATABASE;
-- output: BINARY

9.8. Improved predicate IN
Prior to Firebird 5.0, the IN predicate with a list of constants was limited to 1500 elements because it
was processed by recursively converting the original expression into an equivalent form.

This

F IN (V1, V2, ... VN)

will be transformed into

F = V1 OR F = V2 OR F = VN

Chapter 9. New features in SQL language

73

Since Firebird 5.0, processing of IN predicates is linear. The 1500 item limit has been increased to
65535 items. In addition, queries using the IN predicate with a list of constants are processed much
faster. This was discussed in detail in the first part.

9.9. Package RDB$BLOB_UTIL
The operations with BLOBs inside PSQL were not fast, because any modification to a BLOB always
creates a new temporary BLOB, which leads to additional memory consumption and, in some cases,
to a larger database file for storing temporary BLOBs.

In Firebird 4.0.2, a built-in function, BLOB_APPEND, was added to solve BLOB concatenation problems.
In Firebird 5.0, was added a built-in RDB$BLOB_UTIL package with procedures and functions for more
efficient BLOB manipulation.

We will show several practical examples how to use functions from the package RDB$BLOB_UTIL. The
full description can be found in the Firebird 5.0 Release Notes and in the Firebird 5.0 SQL Language
Reference.

9.9.1. Using the function RDB$BLOB_UTIL.NEW_BLOB

The RDB$BLOB_UTIL.NEW_BLOB function creates a new BLOB SUB_TYPE BINARY. It returns a BLOB suitable
for appending data, similar to BLOB_APPEND.

The difference over BLOB_APPEND is that you can set parameters SEGMENTED and TEMP_STORAGE.

The BLOB_APPEND function always creates blobs in temporary storage, which may not always be the
best approach if the created blob will be stored in a permanent table because it would require a
copy operation.

The BLOB returned by RDB$BLOB_UTIL.NEW_BLOB can be used with BLOB_APPEND to append data, even if
TEMP_STORAGE = FALSE.

Table 2. Input parameters for function RDB$BLOB_UTIL.NEW_BLOB

Parameter Type Description

SEGMENTED BOOLEAN NOT NULL Type of BLOB. If TRUE - a segmented
BLOB will be created, FALSE - a
streaming one.

TEMP_STORAGE BOOLEAN NOT NULL In what storage is the BLOB created?
TRUE - in temporary, FALSE - in
permanent (for writing to a regular
table).

Return type

BLOB SUB_TYPE BINARY

Example:

execute block

Chapter 9. New features in SQL language

74

https://firebirdsql.org/file/documentation/release_notes/html/en/5_0/rlsnotes50.html
https://firebirdsql.org/file/documentation/html/en/refdocs/fblangref50/firebird-50-language-reference.html
https://firebirdsql.org/file/documentation/html/en/refdocs/fblangref50/firebird-50-language-reference.html

declare b blob sub_type text;
as
begin
 -- create a streaming non-temporary BLOB, since it will be added to the table later
 b = rdb$blob_util.new_blob(false, false);

 b = blob_append(b, 'abcde');
 b = blob_append(b, 'fghikj');

 update t
 set some_field = :b
 where id = 1;
end

9.9.2. Reading BLOBs in chunks

When you needed to read part of a BLOB, you used the SUBSTRING function, but this function has one
significant drawback: it always returns a new temporary BLOB.

Since Firebird 5.0 you can use the RDB$BLOB_UTIL.READ_DATA function for this purpose.

Table 3. Input parameters for function RDB$BLOB_UTIL.READ_DATA

Parameter Type Description

HANDLE INTEGER NOT NULL Handle of opened BLOB.

LENGTH INTEGER Quantity of bytes to read.

Return type

VARBINARY(32765)

The RDB$BLOB_UTIL.READ_DATA function is used to read pieces of data from a BLOB handle opened
with RDB$BLOB_UTIL.OPEN_BLOB. When the BLOB has been completely read and there is no more data,
it returns NULL.

If LENGTH parameter value is a positive number, a VARBINARY of maximum length LENGTH is returned.

If NULL is passed to LENGTH, a BLOB segment with a maximum length of 32765 is returned.

When you are done with a BLOB handle, you must close it using the RDB$BLOB_UTIL.CLOSE_HANDLE
procedure.

Example 4. Opening a BLOB and returning it piece by piece to EXECUTE BLOCK

execute block returns (s varchar(10))
as
 declare b blob = '1234567';
 declare bhandle integer;
begin
 -- opens a BLOB for reading and returns its handle.
 bhandle = rdb$blob_util.open_blob(b);

Chapter 9. New features in SQL language

75

 -- Getting the blob in parts
 s = rdb$blob_util.read_data(bhandle, 3);
 suspend;

 s = rdb$blob_util.read_data(bhandle, 3);
 suspend;

 s = rdb$blob_util.read_data(bhandle, 3);
 suspend;

 -- When there is no more data, NULL is returned.
 s = rdb$blob_util.read_data(bhandle, 3);
 suspend;

 -- Close the BLOB handle.
 execute procedure rdb$blob_util.close_handle(bhandle);
end

By passing the NULL value as the LENGTH parameter, you can read a BLOB segment by segment, if the
segments do not exceed 32765 bytes.

Let’s write a procedure to return a BLOB segment by segment

CREATE OR ALTER PROCEDURE SP_GET_BLOB_SEGEMENTS (
 TXT BLOB SUB_TYPE TEXT CHARACTER SET NONE
)
RETURNS (
 SEG VARCHAR(32765) CHARACTER SET NONE
)
AS
 DECLARE H INTEGER;
BEGIN
 H = RDB$BLOB_UTIL.OPEN_BLOB(TXT);
 SEG = RDB$BLOB_UTIL.READ_DATA(H, NULL);
 WHILE (SEG IS NOT NULL) DO
 BEGIN
 SUSPEND;
 SEG = RDB$BLOB_UTIL.READ_DATA(H, NULL);
 END
 EXECUTE PROCEDURE RDB$BLOB_UTIL.CLOSE_HANDLE(H);
END

It can be used, for example, like this:

WITH
 T AS (
 SELECT LIST(CODE_HORSE) AS B
 FROM HORSE
)
SELECT
 S.SEG
FROM T

Chapter 9. New features in SQL language

76

 LEFT JOIN SP_GET_BLOB_SEGEMENTS(T.B) S ON TRUE

Chapter 9. New features in SQL language

77

Chapter 10. Why SKIP LOCKED was
developed?
The one of the often tasks in the development of applications is to organize processing of queue
"task manager - executor". For example, one or more task managers put jobs into a queue, and
executors take a outstanding job from the queue and execute it, then they update the status of the
job. If there is only one executor, then there are no problems. As the number of executors increases,
competition for the task and conflicts between executors arise. The clause SKIP LOCKED helps
developers to implement this type of queue processing in easy way without conflicts.

10.1. Preparing the Database
Let’s try to implement a task processing queue. To do this, let’s create a test database and create the
QUEUE_TASK table in it. Task managers will add tasks to this table, and executors will take free tasks
and complete them. The database creation script with comments is given below:

CREATE DATABASE 'inet://localhost:3055/c:\fbdata\5.0\queue.fdb'
USER SYSDBA password 'masterkey'
DEFAULT CHARACTER SET UTF8;

CREATE DOMAIN D_QUEUE_TASK_STATUS
AS SMALLINT CHECK(VALUE IN (0, 1));

COMMENT ON DOMAIN D_QUEUE_TASK_STATUS IS 'Task completion status';

CREATE TABLE QUEUE_TASK (
 ID BIGINT GENERATED BY DEFAULT AS IDENTITY NOT NULL,
 NAME VARCHAR(50) NOT NULL,
 STARTED BOOLEAN DEFAULT FALSE NOT NULL,
 WORKER_ID BIGINT,
 START_TIME TIMESTAMP,
 FINISH_TIME TIMESTAMP,
 FINISH_STATUS D_QUEUE_TASK_STATUS,
 STATUS_TEXT VARCHAR(100),
 CONSTRAINT PK_QUEUE_TASK PRIMARY KEY(ID)
);

COMMENT ON TABLE QUEUE_TASK IS 'Task queue';
COMMENT ON COLUMN QUEUE_TASK.ID IS 'Task Identifier';
COMMENT ON COLUMN QUEUE_TASK.NAME IS 'Task Name';
COMMENT ON COLUMN QUEUE_TASK.STARTED IS 'Flag that the task has been accepted for processing';
COMMENT ON COLUMN QUEUE_TASK.WORKER_ID IS 'ID of Executor';
COMMENT ON COLUMN QUEUE_TASK.START_TIME IS 'Task execution time start';
COMMENT ON COLUMN QUEUE_TASK.FINISH_TIME IS 'Task execution time finish';
COMMENT ON COLUMN QUEUE_TASK.FINISH_STATUS IS 'The status with which the task completed 0 - successfully, 1 - with
error';
COMMENT ON COLUMN QUEUE_TASK.STATUS_TEXT IS 'Status text. If the task is completed without errors, then "OK", otherwise
the error text';

To add a new task, execute the command

INSERT INTO QUEUE_TASK(NAME) VALUES (?)

In this example, we pass only the task name; in practice, there may be more parameters.

Chapter 10. Why SKIP LOCKED was developed?

78

Each executor must select one outstanding task and set its flag to "Taken for processing".

An executor can get a free task using the following request:

SELECT ID, NAME
FROM QUEUE_TASK
WHERE STARTED IS FALSE
ORDER BY ID
FETCH FIRST ROW ONLY

Next, the executor marks the task as "Taken for processing", sets the task start time and the
executor identifier. This is done with the command:

UPDATE QUEUE_TASK
SET
 STARTED = TRUE,
 WORKER_ID = ?,
 START_TIME = CURRENT_TIMESTAMP
WHERE ID = ?

After the task is accepted for processing, the actual execution of the task begins. When a task is
completed, it is necessary to set the completion time of the task and its status. The task may
complete with an error; in this case, the appropriate status is set and the error text is saved.

UPDATE QUEUE_TASK
SET
 FINISH_STATUS = ?,
 STATUS_TEXT = ?,
 FINISH_TIME = CURRENT_TIMESTAMP
WHERE ID = ?

10.2. Script simulating a job queue
Let’s try to test our idea. To do this, let’s write a simple script in Python.

To write a script, we will need to install two libraries:

pip install firebird-driver
pip install prettytable

Now you can start writing the script. The script is written to run under Windows, however it can
also be run under Linux by changing some constants and the path to the fbclient library. Let’s save
the written script to the file queue_exec.py:

#!/usr/bin/python3

import concurrent.futures as pool

Chapter 10. Why SKIP LOCKED was developed?

79

import logging
import random
import time

from firebird.driver import connect, DatabaseError
from firebird.driver import driver_config
from firebird.driver import tpb, Isolation, TraAccessMode
from firebird.driver.core import TransactionManager
from prettytable import PrettyTable

driver_config.fb_client_library.value = "c:\\firebird\\5.0\\fbclient.dll"

DB_URI = 'inet://localhost:3055/d:\\fbdata\\5.0\\queue.fdb'
DB_USER = 'SYSDBA'
DB_PASSWORD = 'masterkey'
DB_CHARSET = 'UTF8'

WORKERS_COUNT = 4 # Number of Executors
WORKS_COUNT = 40 # Number of Tasks

set up logging to console
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.INFO)

logging.basicConfig(level=logging.DEBUG,
 handlers=[stream_handler])

class Worker:
 """Class Worker is am executor"""

 def __init__(self, worker_id: int):
 self.worker_id = worker_id

 @staticmethod
 def __next_task(tnx: TransactionManager):
 """Retrieves the next task from the queue.

 Arguments:
 tnx: The transaction in which the request is executed
 """
 cur = tnx.cursor()

 cur.execute("""
 SELECT ID, NAME
 FROM QUEUE_TASK
 WHERE STARTED IS FALSE
 ORDER BY ID
 FETCH FIRST ROW ONLY
 """)

 row = cur.fetchone()
 cur.close()
 return row

 def __on_start_task(self, tnx: TransactionManager, task_id: int) -> None:
 """Fires when task execution starts.

 Sets the flag to the task to indicate that it is running, and sets the start time of the task.

 Arguments:
 tnx: The transaction in which the request is executed
 task_id: Task ID
 """
 cur = tnx.cursor()
 cur.execute(

Chapter 10. Why SKIP LOCKED was developed?

80

 """
 UPDATE QUEUE_TASK
 SET
 STARTED = TRUE,
 WORKER_ID = ?,
 START_TIME = CURRENT_TIMESTAMP
 WHERE ID = ?
 """,
 (self.worker_id, task_id,)
)

 @staticmethod
 def __on_finish_task(tnx: TransactionManager, task_id: int, status: int, status_text: str) -> None:
 """Fires when a task completes.

 Sets the task completion time and the status with which the task completed.

 Arguments:
 tnx: The transaction in which the request is executed
 task_id: Task ID
 status: Completion status code. 0 - successful, 1 - completed with error
 status_text: Completion status text. If successful, write "OK",
 otherwise the error text.
 """
 cur = tnx.cursor()
 cur.execute(
 """
 UPDATE QUEUE_TASK
 SET
 FINISH_STATUS = ?,
 STATUS_TEXT = ?,
 FINISH_TIME = CURRENT_TIMESTAMP
 WHERE ID = ?
 """,
 (status, status_text, task_id,)
)

 def on_task_execute(self, task_id: int, name: str) -> None:
 """This method is given as an example of a function to perform some task.

 In real problems it could be different and with a different set of parameters.

 Arguments:
 task_id: Task ID
 name: Task Name
 """
 # let get random delay
 t = random.randint(1, 4)
 time.sleep(t * 0.01)
 # to demonstrate that a task can be performed with errors,
 # let's generate an exception for two of the random numbers.
 if t == 3:
 raise Exception("Some error")

 def run(self) -> int:
 """Task Execution"""
 conflict_counter = 0
 # For parallel execution, each thread must have its own connection to the database.
 with connect(DB_URI, user=DB_USER, password=DB_PASSWORD, charset=DB_CHARSET) as con:
 tnx = con.transaction_manager(tpb(Isolation.SNAPSHOT, lock_timeout=0, access_mode=TraAccessMode.WRITE))
 while True:
 # We extract the next outstanding task and give it a sign that it is being executed.
 # Since the task may be executed with an error, the task start sign
 # is set in the separate transaction.
 tnx.begin()

Chapter 10. Why SKIP LOCKED was developed?

81

 try:
 task_row = self.__next_task(tnx)
 # If the tasks are finished, we terminate the thread
 if task_row is None:
 tnx.commit()
 break
 (task_id, name,) = task_row
 self.__on_start_task(tnx, task_id)
 tnx.commit()
 except DatabaseError as err:
 if err.sqlstate == "40001":
 conflict_counter = conflict_counter + 1
 logging.error(f"Worker: {self.worker_id}, Task: {self.worker_id}, Error: {err}")
 else:
 logging.exception('')
 tnx.rollback()
 continue

 # Execute task
 status = 0
 status_text = "OK"
 try:
 self.on_task_execute(task_id, name)
 except Exception as err:
 # If an error occurs during execution,
 # then set the appropriate status code and save the error text.
 status = 1
 status_text = f"{err}"
 # logging.error(status_text)

 # We save the task completion time and record its completion status.
 tnx.begin()
 try:
 self.__on_finish_task(tnx, task_id, status, status_text)
 tnx.commit()
 except DatabaseError:
 if err.sqlstate == "40001":
 conflict_counter = conflict_counter + 1
 logging.error(f"Worker: {self.worker_id}, Task: {self.worker_id}, Error: {err}")
 else:
 logging.exception('')
 tnx.rollback()

 return conflict_counter

def main():
 print(f"Start execute script. Works: {WORKS_COUNT}, workers: {WORKERS_COUNT}\n")

 with connect(DB_URI, user=DB_USER, password=DB_PASSWORD, charset=DB_CHARSET) as con:
 # Clean previous tasks from the queue
 con.begin()
 with con.cursor() as cur:
 cur.execute("DELETE FROM QUEUE_TASK")
 con.commit()
 # Task Manager sets 40 tasks
 con.begin()
 with con.cursor() as cur:
 cur.execute(
 """
 EXECUTE BLOCK (CNT INTEGER = ?)
 AS
 DECLARE I INTEGER;
 BEGIN
 I = 0;
 WHILE (I < CNT) DO

Chapter 10. Why SKIP LOCKED was developed?

82

 BEGIN
 I = I + 1;
 INSERT INTO QUEUE_TASK(NAME)
 VALUES ('Task ' || :I);
 END
 END
 """,
 (WORKS_COUNT,)
)
 con.commit()

 # Let's create executors
 workers = map(lambda worker_id: Worker(worker_id), range(WORKERS_COUNT))
 with pool.ProcessPoolExecutor(max_workers=WORKERS_COUNT) as executer:
 features = map(lambda worker: executer.submit(worker.run), workers)
 conflicts = map(lambda feature: feature.result(), pool.as_completed(features))
 conflict_count = sum(conflicts)

 # read statistics
 with connect(DB_URI, user=DB_USER, password=DB_PASSWORD, charset=DB_CHARSET) as con:
 cur = con.cursor()
 cur.execute("""
 SELECT
 COUNT(*) AS CNT_TASK,
 COUNT(*) FILTER(WHERE STARTED IS TRUE AND FINISH_TIME IS NULL) AS CNT_ACTIVE_TASK,
 COUNT(*) FILTER(WHERE FINISH_TIME IS NOT NULL) AS CNT_FINISHED_TASK,
 COUNT(*) FILTER(WHERE FINISH_STATUS = 0) AS CNT_SUCCESS,
 COUNT(*) FILTER(WHERE FINISH_STATUS = 1) AS CNT_ERROR,
 AVG(DATEDIFF(MILLISECOND FROM START_TIME TO FINISH_TIME)) AS AVG_ELAPSED_TIME,
 DATEDIFF(MILLISECOND FROM MIN(START_TIME) TO MAX(FINISH_TIME)) AS SUM_ELAPSED_TIME,
 CAST(? AS BIGINT) AS CONFLICTS
 FROM QUEUE_TASK
 """, (conflict_count,))
 row = cur.fetchone()
 cur.close()

 stat_columns = ["TASKS", "ACTIVE_TASKS", "FINISHED_TASKS", "SUCCESS", "ERROR", "AVG_ELAPSED_TIME",
 "SUM_ELAPSED_TIME", "CONFLICTS"]

 stat_table = PrettyTable(stat_columns)
 stat_table.add_row(row)
 print("\nStatistics:")
 print(stat_table)

 cur = con.cursor()
 cur.execute("""
 SELECT
 ID,
 NAME,
 STARTED,
 WORKER_ID,
 START_TIME,
 FINISH_TIME,
 FINISH_STATUS,
 STATUS_TEXT
 FROM QUEUE_TASK
 """)
 rows = cur.fetchall()
 cur.close()

 columns = ["ID", "NAME", "STARTED", "WORKER", "START_TIME", "FINISH_TIME",
 "STATUS", "STATUS_TEXT"]

 table = PrettyTable(columns)
 table.add_rows(rows)

Chapter 10. Why SKIP LOCKED was developed?

83

 print("\nTasks:")
 print(table)

if __name__ == "__main__":
 main()

In this script, the task manager creates 40 tasks that must be completed by 4 executors. Each
executor runs in its own thread. Based on the results of the script, task execution statistics are
displayed, as well as the number of conflicts and the tasks themselves.

Let’s run the script:

python ./queue_exec.py

Start execute script. Works: 40, workers: 4

ERROR:root:Worker: 2, Task: 2, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95695
ERROR:root:Worker: 2, Task: 2, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95697
ERROR:root:Worker: 2, Task: 2, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95703
ERROR:root:Worker: 2, Task: 2, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95706
ERROR:root:Worker: 0, Task: 0, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95713
ERROR:root:Worker: 2, Task: 2, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95722
ERROR:root:Worker: 3, Task: 3, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95722
ERROR:root:Worker: 1, Task: 1, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95722
ERROR:root:Worker: 1, Task: 1, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95728
ERROR:root:Worker: 0, Task: 0, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95734
ERROR:root:Worker: 0, Task: 0, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95736
ERROR:root:Worker: 1, Task: 1, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95741
ERROR:root:Worker: 1, Task: 1, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95744
ERROR:root:Worker: 0, Task: 0, Error: deadlock
-update conflicts with concurrent update
-concurrent transaction number is 95749

Chapter 10. Why SKIP LOCKED was developed?

84

Statistics:
+-------+--------------+----------------+---------+-------+------------------+------------------+-----------+
| TASKS | ACTIVE_TASKS | FINISHED_TASKS | SUCCESS | ERROR | AVG_ELAPSED_TIME | SUM_ELAPSED_TIME | CONFLICTS |
+-------+--------------+----------------+---------+-------+------------------+------------------+-----------+
| 40 | 0 | 40 | 28 | 12 | 43.1 | 1353 | 14 |
+-------+--------------+----------------+---------+-------+------------------+------------------+-----------+

Tasks:
+------+---------+---------+--------+--------------------------+--------------------------+--------+-------------+
| ID | NAME | STARTED | WORKER | START_TIME | FINISH_TIME | STATUS | STATUS_TEXT |
+------+---------+---------+--------+--------------------------+--------------------------+--------+-------------+
1341	Task 1	True	0	2023-07-06 15:35:29.9800	2023-07-06 15:35:30.0320	1	Some error
1342	Task 2	True	0	2023-07-06 15:35:30.0420	2023-07-06 15:35:30.0800	1	Some error
1343	Task 3	True	0	2023-07-06 15:35:30.0900	2023-07-06 15:35:30.1130	0	OK
1344	Task 4	True	0	2023-07-06 15:35:30.1220	2023-07-06 15:35:30.1450	0	OK
...

From the results of the script execution it is clear that 4 executors are constantly conflicting over
the task. The faster the task is completed and the more performers there are, the higher the
likelihood of conflicts.

10.3. Clause SKIP LOCKED
How can we change our solution so that it works efficiently and without conflicts? Here comes the
new clause SKIP LOCKED from Firebird 5.0.

Clause SKIP LOCKED allows you to skip already locked entries, thereby allowing you to work without
conflicts. It can be used in queries where there is a possibility of an update conflict, that is, in SELECT
… WITH LOCK, UPDATE and DELETE queries. Let’s look at its syntax:

SELECT
 [FIRST ...]
 [SKIP ...]
 FROM <sometable>
 [WHERE ...]
 [PLAN ...]
 [ORDER BY ...]
 [{ ROWS ... } | {OFFSET ...} | {FETCH ...}]
 [FOR UPDATE [OF ...]]
 [WITH LOCK [SKIP LOCKED]]

UPDATE <sometable>
 SET ...
 [WHERE ...]
 [PLAN ...]
 [ORDER BY ...]
 [ROWS ...]
 [SKIP LOCKED]
 [RETURNING ...]

DELETE FROM <sometable>
 [WHERE ...]

Chapter 10. Why SKIP LOCKED was developed?

85

 [PLAN ...]
 [ORDER BY ...]
 [ROWS ...]
 [SKIP LOCKED]
 [RETURNING ...]

10.4. Job queue without conflicts
Let’s try to fix our script so that executors do not conflict over tasks.

To do this, we need to slightly rewrite the request in the __next_task method of the Worker class.

 @staticmethod
 def __next_task(tnx: TransactionManager):
 """Retrieves the next task from the queue.

 Arguments:
 tnx: The transaction in which the request is executed
 """
 cur = tnx.cursor()

 cur.execute("""
 SELECT ID, NAME
 FROM QUEUE_TASK
 WHERE STARTED IS FALSE
 ORDER BY ID
 FETCH FIRST ROW ONLY
 FOR UPDATE WITH LOCK SKIP LOCKED
 """)

 row = cur.fetchone()
 cur.close()
 return row

Let’s run the script:

python ./queue_exec.py

Start execute script. Works: 40, workers: 4

Statistics:
+-------+--------------+----------------+---------+-------+------------------+------------------+-----------+
| TASKS | ACTIVE_TASKS | FINISHED_TASKS | SUCCESS | ERROR | AVG_ELAPSED_TIME | SUM_ELAPSED_TIME | CONFLICTS |
+-------+--------------+----------------+---------+-------+------------------+------------------+-----------+
| 40 | 0 | 40 | 32 | 8 | 39.1 | 1048 | 0 |
+-------+--------------+----------------+---------+-------+------------------+------------------+-----------+

Tasks:
+------+---------+---------+--------+--------------------------+--------------------------+--------+-------------+
| ID | NAME | STARTED | WORKER | START_TIME | FINISH_TIME | STATUS | STATUS_TEXT |
+------+---------+---------+--------+--------------------------+--------------------------+--------+-------------+
| 1381 | Task 1 | True | 0 | 2023-07-06 15:57:22.0360 | 2023-07-06 15:57:22.0740 | 0 | OK |

Chapter 10. Why SKIP LOCKED was developed?

86

1382	Task 2	True	0	2023-07-06 15:57:22.0840	2023-07-06 15:57:22.1130	0	OK
1383	Task 3	True	0	2023-07-06 15:57:22.1220	2023-07-06 15:57:22.1630	0	OK
1384	Task 4	True	0	2023-07-06 15:57:22.1720	2023-07-06 15:57:22.1910	0	OK
1385	Task 5	True	0	2023-07-06 15:57:22.2020	2023-07-06 15:57:22.2540	0	OK
1386	Task 6	True	0	2023-07-06 15:57:22.2620	2023-07-06 15:57:22.3220	0	OK
1387	Task 7	True	0	2023-07-06 15:57:22.3300	2023-07-06 15:57:22.3790	1	Some error
...

This time there are no conflicts. Thus, in Firebird 5.0 you can use the SKIP LOCKED phrase to avoid
unnecessary update conflicts.

10.5. Next steps
Our job queue could be improved even more. Let’s look at the query execution plan

SELECT
 ID, NAME
FROM QUEUE_TASK
WHERE STARTED IS FALSE
ORDER BY ID
FETCH FIRST ROW ONLY
FOR UPDATE WITH LOCK SKIP LOCKED

Select Expression
 -> First N Records
 -> Write Lock
 -> Filter
 -> Table "QUEUE_TASK" Access By ID
 -> Index "PK_QUEUE_TASK" Full Scan

This execution plan is not very good. A record from the QUEUE_TASK table is retrieved using index
navigation, however, it reads the whole table with the complete index scan. If the QUEUE_TASK table
is not cleared as we did in our script, then over time, the selection of unprocessed tasks will become
slower and slower.

You can create an index on the STARTED field. If the task manager constantly adds new tasks, and the
executors perform them, then the number of unstarted tasks is always less than the number of
completed ones, thus this index will effectively filter tasks. Let’s check it:

CREATE INDEX IDX_QUEUE_TASK_INACTIVE ON QUEUE_TASK(STARTED);

SELECT
 ID, NAME
FROM QUEUE_TASK
WHERE STARTED IS FALSE
ORDER BY ID
FETCH FIRST ROW ONLY
FOR UPDATE WITH LOCK SKIP LOCKED;

Chapter 10. Why SKIP LOCKED was developed?

87

Select Expression
 -> First N Records
 -> Write Lock
 -> Filter
 -> Table "QUEUE_TASK" Access By ID
 -> Index "PK_QUEUE_TASK" Full Scan
 -> Bitmap
 -> Index "IDX_QUEUE_TASK_INACTIVE" Range Scan (full match)

This is true, but now there are two indexes, one for filtering and one for navigation.

We can go further and create a composite index:

DROP INDEX IDX_QUEUE_TASK_INACTIVE;

CREATE INDEX IDX_QUEUE_TASK_INACTIVE ON QUEUE_TASK(STARTED, ID);

Select Expression
 -> First N Records
 -> Write Lock
 -> Filter
 -> Table "QUEUE_TASK" Access By ID
 -> Index "IDX_QUEUE_TASK_INACTIVE" Range Scan (partial match: 1/2)

This will be more efficient since only one index is used for navigation, and it is partially scanned.
However, such an index has a significant drawback: it will not be compact (and not be very fast).

To solve this problem, you can use another new feature from Firebird 5.0: partial indices.

A partial index is an index that is built on a subset of table rows defined by
a conditional expression (this is called a partial index predicate). Such an
index contains entries only for rows satisfying the predicate.

Let’s create partial index:

DROP INDEX IDX_QUEUE_TASK_INACTIVE;

CREATE INDEX IDX_QUEUE_TASK_INACTIVE ON QUEUE_TASK (STARTED, ID) WHERE (STARTED IS FALSE);

SELECT
 ID, NAME
FROM QUEUE_TASK
WHERE STARTED IS FALSE
ORDER BY STARTED, ID
FETCH FIRST ROW ONLY
FOR UPDATE WITH LOCK SKIP LOCKED

Chapter 10. Why SKIP LOCKED was developed?

88

Select Expression
 -> First N Records
 -> Write Lock
 -> Filter
 -> Table "QUEUE_TASK" Access By ID
 -> Index "IDX_QUEUE_TASK_INACTIVE" Full Scan

A record from the QUEUE_TASK table is retrieved by navigating the IDX_QUEUE_TASK_INACTIVE index.
Despite, that the index scan is complete, the index itself is very compact, since it contains only the
keys for which the condition STARTED IS FALSE is satisfied. There are always much fewer such
entries in the normal task queue, than records with completed tasks.

10.6. Summary
In this material we demonstrated how to use the new SKIP LOCKED functionality that appeared in
Firebird 5.0, and also have shown example of PARTIAL indices, which also appeared in Firebird 5.0.

A DDL script for creating a database, as well as a Python script with emulation of a task queue can
be downloaded from the following links:

• ddl.sql

• queue_exec.py

Chapter 10. Why SKIP LOCKED was developed?

89

https://github.com/sim1984/fb_task_queue/blob/main/ddl.sql
https://github.com/sim1984/fb_task_queue/blob/main/queue_exec.py

Chapter 11. SQL and PSQL Profiling
One of the tasks of a database developer or administrator is to determine the causes of
"slowdowns" in the information system.

Starting from Firebird 2.5, a powerful tracing tool has been added to their arsenal. Tracing is an
indispensable tool for finding application bottlenecks, evaluating resources consumed during
query execution, and determining the frequency of certain actions. Tracing shows statistics in the
most detailed form (unlike the statistics available in ISQL, for example). The statistics do not take
into account the costs of query preparation and data transmission over the network, which makes
it "cleaner" than the data shown by ISQL. At the same time, tracing has a very insignificant impact
on performance. Even with intensive logging, it usually results in no more than a 2-3% drop in the
speed of executed queries.

After slow queries are "caught" by tracing, you can start optimizing them. However, such queries
can be quite complex, and sometimes even call stored procedures, so a profiling tool is needed to
help identify bottlenecks in the query itself or in the called PSQL module. Starting from Firebird 5.0,
such a tool has appeared.

The profiler allows users to measure the performance costs of SQL and PSQL code. This is
implemented using a system package in the engine that transmits data to the profiler plugin.

In this document, the engine and plugin are considered as a whole. Additionally, it is assumed that
the default profiler plugin (Default_Profiler) is used.

The RDB$PROFILER package can profile the execution of PSQL code, collecting statistics on how many
times each line was executed, as well as its minimum, maximum, and total execution time (accurate
to nanoseconds), as well as statistics on opening and fetching records from implicit and explicit SQL
cursors. In addition, you can get statistics on SQL cursors in terms of data sources (access methods)
of the expanded query plan.

Although the execution time is measured with nanosecond accuracy, this result
should not be trusted. The process of measuring execution time has certain
overhead costs, which the profiler tries to compensate for. Accordingly, the
measured time cannot be accurate, but it allows for a comparative analysis of the
costs of executing individual sections of PSQL code among themselves, and
identifying bottlenecks.

To collect profiling data, the user must first start a profiling session using the
RDB$PROFILER.START_SESSION function. This function returns a profiling session identifier, which is
later saved in the profiler snapshot tables. Later, you can execute queries to these tables for user
analysis. A profiler session can be local (same connection) or remote (another connection).

Remote profiling simply redirects session control commands to the remote connection. Thus, it is
possible for a client to profile multiple connections simultaneously. It is also possible that a locally
or remotely started profiling session contains commands issued by another connection.

Remotely executed session control commands require the target connection to be in a waiting state,
i.e., not executing other queries. When the target connection is not in waiting mode, the call is

Chapter 11. SQL and PSQL Profiling

90

blocked waiting for this state.

If the remote connection comes from another user, the calling user must have the
PROFILE_ANY_ATTACHMENT system privilege.

After starting a session, statistics for PSQL and SQL statements are collected in memory. The
profiling session only collects data about statements executed in the connection associated with the
session. Data is aggregated and saved for each query (i.e., executed statement). When querying
snapshot tables, the user can perform additional aggregation for each statement or use auxiliary
views that do this automatically.

The session can be paused to temporarily disable statistics collection. Later, it can be resumed to
return statistics collection in the same session.

To analyze the collected data, the user must flush the data to snapshot tables, which can be done by
finishing or pausing the session (with the FLUSH parameter set to TRUE), or by calling
RDB$PROFILER.FLUSH. Data is flushed using an autonomous transaction (a transaction starts and ends
with the specific purpose of updating profiler data).

All procedures and functions of the RDB$PROFILER package contain an ATTACHMENT_ID parameter,
which should be specified if you want to manage a remote profiling session. If this parameter is
NULL or not specified, the procedures and functions manage the local profiling session.

11.1. Starting a Profiling Session
To start a profiling session, you need to call the RDB$PROFILER.START_SESSION function, which returns
the profiling session identifier.

This function has the following parameters:

• DESCRIPTION of type VARCHAR(255) CHARACTER SET UTF8, default is NULL;

• FLUSH_INTERVAL of type INTEGER, default is NULL;

• ATTACHMENT_ID of type BIGINT, default is NULL (which means CURRENT_CONNECTION);

• PLUGIN_NAME of type VARCHAR(255) CHARACTER SET UTF8, default is NULL;

• PLUGIN_OPTIONS of type VARCHAR(255) CHARACTER SET UTF8, default is NULL.

You can pass an arbitrary text description of the session to the DESCRIPTION parameter.

If the FLUSH_INTERVAL parameter is not NULL, it sets the interval for automatic flushing of statistics to
snapshot tables, as when manually calling the RDB$PROFILER.SET_FLUSH_INTERVAL procedure. If
FLUSH_INTERVAL is greater than zero, automatic statistics flushing is enabled; otherwise, it is disabled.
The FLUSH_INTERVAL parameter is measured in seconds.

If ATTACHMENT_ID is not NULL, the profiling session is started for a remote connection; otherwise, the
session starts for the current connection.

The PLUGIN_NAME parameter is used to specify which profiling plugin is used for the profiling session.
If it is NULL, the profiling plugin specified in the DefaultProfilerPlugin configuration parameter is

Chapter 11. SQL and PSQL Profiling

91

used.

Each profiling plugin may have its own options, which can be passed to the PLUGIN_OPTIONS
parameter. For the Default_Profiler plugin included in the standard Firebird 5.0 distribution, the
following values are allowed: NULL or 'DETAILED_REQUESTS'.

When DETAILED_REQUESTS is used, the PLG$PROF_REQUESTS table will store detailed query data, i.e., one
record for each SQL statement call. This can result in the creation of a large number of records,
which will lead to slow operation of RDB$PROFILER.FLUSH.

When DETAILED_REQUESTS is not used (default), the PLG$PROF_REQUESTS table saves an aggregated
record for each SQL statement, using REQUEST_ID = 0.

Here, an SQL statement refers to a prepared SQL query stored in the prepared
query cache. Queries are considered the same if they match exactly, character by
character. So if you have semantically identical queries that differ in comments,
they are different queries for the prepared query cache. Prepared queries can be
executed multiple times with different sets of input parameters.

11.2. Pausing a Profiling Session
The RDB$PROFILER.PAUSE_SESSION procedure pauses the current profiler session (with the given
ATTACHMENT_ID). For a paused session, execution statistics for subsequent SQL statements are not
collected.

If the FLUSH parameter is TRUE, the snapshot tables are updated with profiling data up to the current
moment; otherwise, the data remains only in memory for subsequent updating.

Calling RDB$PROFILER.PAUSE_SESSION(TRUE) has the same effect as calling
RDB$PROFILER.PAUSE_SESSION(FALSE) followed by a call to RDB$PROFILER.FLUSH (using the same
ATTACHMENT_ID).

Input parameters:

• FLUSH of type BOOLEAN NOT NULL, default is FALSE;

• ATTACHMENT_ID of type BIGINT, default is NULL (which means CURRENT_CONNECTION).

11.3. Resuming a Profiling Session
The RDB$PROFILER.RESUME_SESSION procedure resumes the current profiler session (with the given
ATTACHMENT_ID) if it was paused. After resuming the session, execution statistics for subsequent SQL
statements are collected again.

Input parameters:

• ATTACHMENT_ID of type BIGINT, default is NULL (which means CURRENT_CONNECTION).

Chapter 11. SQL and PSQL Profiling

92

11.4. Finishing a Profiling Session
The RDB$PROFILER.FINISH_SESSION procedure finishes the current profiler session (with the given
ATTACHMENT_ID).

If the FLUSH parameter is TRUE, the snapshot tables are updated with data from the finished session
(and old finished sessions not yet present in the snapshot); otherwise, the data remains only in
memory for subsequent updating.

Calling RDB$PROFILER.FINISH_SESSION(TRUE) has the same effect as calling
RDB$PROFILER.FINISH_SESSION(FALSE) followed by a call to RDB$PROFILER.FLUSH (using the same
ATTACHMENT_ID).

Input parameters:

• FLUSH of type BOOLEAN NOT NULL, default is TRUE;

• ATTACHMENT_ID of type BIGINT, default is NULL (which means CURRENT_CONNECTION).

11.5. Canceling a Profiling Session
The RDB$PROFILER.PAUSE_SESSION procedure pauses the current profiler session (with the given
ATTACHMENT_ID). For a paused session, execution statistics for subsequent SQL statements are not
collected.

If the FLUSH parameter is TRUE, the snapshot tables are updated with profiling data up to the current
moment; otherwise, the data remains only in memory for subsequent updating.

Calling RDB$PROFILER.PAUSE_SESSION(TRUE) has the same effect as calling
RDB$PROFILER.PAUSE_SESSION(FALSE) followed by a call to RDB$PROFILER.FLUSH (using the same
ATTACHMENT_ID).

Input parameters:

• FLUSH of type BOOLEAN NOT NULL, default is FALSE;

• ATTACHMENT_ID of type BIGINT, default is NULL (which means CURRENT_CONNECTION).

11.6. Resuming a Profiling Session
The RDB$PROFILER.RESUME_SESSION procedure resumes the current profiler session (with the given
ATTACHMENT_ID) if it was paused. After resuming the session, execution statistics for subsequent SQL
statements are collected again.

Input parameters:

• ATTACHMENT_ID of type BIGINT, default is NULL (which means CURRENT_CONNECTION).

Chapter 11. SQL and PSQL Profiling

93

11.7. Finishing a Profiling Session
The RDB$PROFILER.FINISH_SESSION procedure finishes the current profiler session (with the given
ATTACHMENT_ID).

If the FLUSH parameter is TRUE, the snapshot tables are updated with data from the finished session
(and old finished sessions not yet present in the snapshot); otherwise, the data remains only in
memory for subsequent updating.

Calling RDB$PROFILER.FINISH_SESSION(TRUE) has the same effect as calling
RDB$PROFILER.FINISH_SESSION(FALSE) followed by a call to RDB$PROFILER.FLUSH (using the same
ATTACHMENT_ID).

Input parameters:

• FLUSH of type BOOLEAN NOT NULL, default is TRUE;

• ATTACHMENT_ID of type BIGINT, default is NULL (which means CURRENT_CONNECTION).

11.8. Canceling a Profiling Session
The RDB$PROFILER.CANCEL_SESSION procedure cancels the current profiling session (with the given
ATTACHMENT_ID).

All session data present in the profiler plugin’s memory is destroyed and not flushed to the
snapshot tables.

Already flushed data is not automatically deleted.

Input parameters:

• ATTACHMENT_ID of type BIGINT, default is NULL (which means CURRENT_CONNECTION).

11.9. Discarding Profiling Sessions
The RDB$PROFILER.DISCARD procedure removes all sessions (with the given ATTACHMENT_ID) from
memory without flushing them to the snapshot tables.

If there is an active profiling session, it is canceled.

Input parameters:

• ATTACHMENT_ID of type BIGINT, default is NULL (which means CURRENT_CONNECTION).

11.10. Flushing Profiling Session Statistics to Snapshot
Tables
The RDB$PROFILER.FLUSH procedure updates the snapshot tables with data from profiling sessions
(with the given ATTACHMENT_ID).

Chapter 11. SQL and PSQL Profiling

94

After flushing the statistics, the data is saved in the tables PLG$PROF_SESSIONS, PLG$PROF_STATEMENTS,
PLG$PROF_RECORD_SOURCES, PLG$PROF_REQUESTS, PLG$PROF_PSQL_STATS, and PLG$PROF_RECORD_SOURCE_STATS
and can be read and analyzed by the user.

Data is updated using an autonomous transaction, so if the procedure is called in a snapshot
transaction, the data will not be available for immediate reading in the same transaction.

After flushing the statistics, completed profiling sessions are removed from memory.

Input parameters:

• ATTACHMENT_ID of type BIGINT, default is NULL (which means CURRENT_CONNECTION).

11.11. Setting the Statistics Flush Interval
The RDB$PROFILER.SET_FLUSH_INTERVAL procedure enables periodic automatic flushing of statistics
(when FLUSH_INTERVAL is greater than 0) or disables it (when FLUSH_INTERVAL is 0).

The FLUSH_INTERVAL parameter is interpreted as the number of seconds.

Input parameters:

• FLUSH_INTERVAL of type INTEGER NOT NULL;

• ATTACHMENT_ID of type BIGINT, default is NULL (which means CURRENT_CONNECTION).

11.12. Snapshot Tables
Snapshot tables (as well as views and sequences) are created automatically when the profiler is
first used. They belong to the database owner with read/write permissions for PUBLIC.

When a profiling session is deleted, the associated data in other profiler snapshot tables is
automatically deleted using foreign keys with the DELETE CASCADE option.

Below is a list of tables that store profiling data.

11.12.1. Table PLG$PROF_SESSIONS

The PLG$PROF_SESSIONS table contains information about profiling sessions.

Table 4. Description of columns in the PLG$PROF_SESSIONS table

Column Name Data Type Description

PROFILE_ID BIGINT Profiling session identifier.

ATTACHMENT_ID BIGINT Connection identifier for which the
profiling session was started.

USER_NAME CHAR(63) Name of the user who started the
profiling session.

Chapter 11. SQL and PSQL Profiling

95

Column Name Data Type Description

DESCRIPTION VARCHAR(255) Description passed in the DESCRIPTION
parameter when calling
RDB$PROFILER.START_SESSION.

START_TIMESTAMP TIMESTAMP WITH TIME
ZONE

Start time of the profiling session.

FINISH_TIMESTAMP TIMESTAMP WITH TIME
ZONE

End time of the profiling session (NULL
if the session is not finished).

Primary key: PROFILE_ID.

11.12.2. Table PLG$PROF_STATEMENTS

The PLG$PROF_STATEMENTS table contains information about statements.

Table 5. Description of columns in the PLG$PROF_STATEMENTS table

Column Name Data Type Description

PROFILE_ID BIGINT Profiling session identifier.

STATEMENT_ID BIGINT Statement identifier.

PARENT_STATEMENT_ID BIGINT Parent statement identifier. Relates to
subprograms.

STATEMENT_TYPE VARCHAR(20) Statement type: BLOCK, FUNCTION,
PROCEDURE, or TRIGGER.

PACKAGE_NAME CHAR(63) Package name.

ROUTINE_NAME CHAR(63) Function, procedure, or trigger name.

SQL_TEXT BLOB SUB_TYPE TEXT SQL text for BLOCK type statements.

Primary key: PROFILE_ID, STATEMENT_ID.

11.12.3. Table PLG$PROF_REQUESTS

The PLG$PROF_REQUESTS table contains statistics on SQL query execution.

If the profiler is started with the DETAILED_REQUESTS option, the PLG$PROF_REQUESTS table will store
detailed query data, i.e., one record for each statement call. This can result in the creation of a large
number of records, which will lead to slow operation of RDB$PROFILER.FLUSH.

When DETAILED_REQUESTS is not used (default), the PLG$PROF_REQUESTS table saves an aggregated
record for each statement, using REQUEST_ID = 0.

Table 6. Description of columns in the PLG$PROF_REQUESTS table

Column Name Data Type Description

PROFILE_ID BIGINT Profiling session identifier.

Chapter 11. SQL and PSQL Profiling

96

Column Name Data Type Description

STATEMENT_ID BIGINT Statement identifier.

REQUEST_ID BIGINT Request identifier.

CALLER_STATEMENT_ID BIGINT Caller statement identifier.

CALLER_REQUEST_ID BIGINT Caller request identifier.

START_TIMESTAMP TIMESTAMP WITH TIME
ZONE

Request start time.

FINISH_TIMESTAMP TIMESTAMP WITH TIME
ZONE

Request finish time.

TOTAL_ELAPSED_TIME BIGINT Accumulated request execution time (in
nanoseconds).

Primary key: PROFILE_ID, STATEMENT_ID, REQUEST_ID.

11.12.4. Table PLG$PROF_CURSORS

The PLG$PROF_CURSORS table contains information about cursors.

Table 7. Description of columns in the PLG$PROF_CURSORS table

Column Name Data Type Description

PROFILE_ID BIGINT Profiling session identifier.

STATEMENT_ID BIGINT Statement identifier.

CURSOR_ID BIGINT Cursor identifier.

NAME CHAR(63) Name of the explicitly declared cursor.

LINE_NUM INTEGER PSQL line number where the cursor is
defined.

COLUMN_NUM INTEGER PSQL column number where the cursor
is defined.

Primary key: PROFILE_ID, STATEMENT_ID, CURSOR_ID.

11.12.5. Table PLG$PROF_RECORD_SOURCES

The PLG$PROF_RECORD_SOURCES table contains information about data sources.

Table 8. Description of columns in the PLG$PROF_RECORD_SOURCES table

Column Name Data Type Description

PROFILE_ID BIGINT Profiling session identifier.

STATEMENT_ID BIGINT Statement identifier.

CURSOR_ID BIGINT Cursor identifier.

RECORD_SOURCE_ID BIGINT Data source identifier.

Chapter 11. SQL and PSQL Profiling

97

Column Name Data Type Description

PARENT_RECORD_SOURCE_ID BIGINT Parent data source identifier.

LEVEL INTEGER Indent level for the data source.
Necessary when constructing a detailed
plan.

ACCESS_PATH BLOB SUB_TYPE TEXT Description of the access method for the
data source.

Primary key: PROFILE_ID, STATEMENT_ID, CURSOR_ID, RECORD_SOURCE_ID.

11.12.6. Table PLG$PROF_RECORD_SOURCE_STATS

The PLG$PROF_RECORD_SOURCES table contains statistics on data sources.

Table 9. Description of columns in the PLG$PROF_RECORD_SOURCE_STATS table

Column Name Data Type Description

PROFILE_ID BIGINT Profiling session identifier.

STATEMENT_ID BIGINT Statement identifier.

REQUEST_ID BIGINT Request identifier.

CURSOR_ID BIGINT Cursor identifier.

RECORD_SOURCE_ID BIGINT Data source identifier.

OPEN_COUNTER BIGINT Number of times the data source was
opened.

OPEN_MIN_ELAPSED_TIME BIGINT Minimum time to open the data source
(in nanoseconds).

OPEN_MAX_ELAPSED_TIME BIGINT Maximum time to open the data source
(in nanoseconds).

OPEN_TOTAL_ELAPSED_TIME BIGINT Accumulated time to open the data
source (in nanoseconds).

FETCH_COUNTER BIGINT Number of fetches from the data source.

FETCH_MIN_ELAPSED_TIME BIGINT Minimum time to fetch a record from
the data source (in nanoseconds).

FETCH_MAX_ELAPSED_TIME BIGINT Maximum time to fetch a record from
the data source (in nanoseconds).

FETCH_TOTAL_ELAPSED_TIME BIGINT Accumulated time to fetch records from
the data source (in nanoseconds).

Primary key: PROFILE_ID, STATEMENT_ID, REQUEST_ID, CURSOR_ID, RECORD_SOURCE_ID.

Chapter 11. SQL and PSQL Profiling

98

11.12.7. Table PLG$PROF_PSQL_STATS

The PLG$PROF_PSQL_STATS table contains PSQL statistics.

Table 10. Description of columns in the PLG$PROF_PSQL_STATS table

Column Name Data Type Description

PROFILE_ID BIGINT Profiling session identifier.

STATEMENT_ID BIGINT Statement identifier.

REQUEST_ID BIGINT Request identifier.

LINE_NUM INTEGER PSQL line number for the statement.

COLUMN_NUM INTEGER PSQL column number for the statement.

COUNTER BIGINT Number of executions for the
line/column number.

MIN_ELAPSED_TIME BIGINT Minimum execution time (in
nanoseconds) for the line/column.

MAX_ELAPSED_TIME BIGINT Maximum execution time (in
nanoseconds) for the line/column.

TOTAL_ELAPSED_TIME BIGINT Accumulated execution time (in
nanoseconds) for the line/column.

Primary key: PROFILE_ID, STATEMENT_ID, REQUEST_ID, LINE_NUM, COLUMN_NUM.

11.13. Auxiliary Views
In addition to snapshot tables, the profiling plugin creates auxiliary views. These views help extract
profiling data aggregated at the statement level.

Auxiliary views are the preferred way to analyze profiling data for quickly finding "hot spots". They
can also be used in conjunction with snapshot tables. Once "hot spots" are found, you can drill
down into the data at the query level using the tables.

Below is a list of views for the Default_Profiler.

PLG$PROF_PSQL_STATS_VIEW

aggregated PSQL statistics in a profiling session.

PLG$PROF_RECORD_SOURCE_STATS_VIEW

aggregated statistics on data sources in a profiling session.

PLG$PROF_STATEMENT_STATS_VIEW

aggregated statistics of SQL statements in a profiling session.

In this document, I will not provide the source code for these views and a description of their
columns; you can always view the text of these views yourself. A description of the columns can be
found in the "Firebird 5.0 SQL Language Reference".

Chapter 11. SQL and PSQL Profiling

99

11.14. Profiler Launch Modes
Before we move on to real-world examples of using the profiler, I’ll demonstrate the difference
between the different modes of running the profiling plugin.

11.14.1. Option DETAILED_REQUESTS

The profiling statistics also include the SELECT RDB$PROFILER.START_SESSION() …
query and the RDB$PROFILER.START_SESSION function startup statistics.

In order to limit the statistics output, I add a filter by the query text, in this case I
output statistics only for those queries that contain 'FROM HORSE'.

SELECT RDB$PROFILER.START_SESSION('Profile without "DETAILED_REQUESTS"')
FROM RDB$DATABASE;

SELECT COUNT(*) FROM HORSE;

SELECT COUNT(*) FROM HORSE;

SELECT RDB$PROFILER.START_SESSION('Profile with "DETAILED_REQUESTS"',
 NULL, NULL, NULL, 'DETAILED_REQUESTS')
FROM RDB$DATABASE;

SELECT COUNT(*) FROM HORSE;

SELECT COUNT(*) FROM HORSE;

EXECUTE PROCEDURE RDB$PROFILER.FINISH_SESSION;

COMMIT;

SELECT
 S.DESCRIPTION,
 V.*
FROM PLG$PROF_STATEMENT_STATS_VIEW V
JOIN PLG$PROF_SESSIONS S ON S.PROFILE_ID = V.PROFILE_ID
WHERE V.SQL_TEXT CONTAINING 'FROM HORSE';

DESCRIPTION Profile without "DETAILED_REQUESTS"
PROFILE_ID 12
STATEMENT_ID 2149
STATEMENT_TYPE BLOCK
PACKAGE_NAME <null>
ROUTINE_NAME <null>
PARENT_STATEMENT_ID <null>
PARENT_STATEMENT_TYPE <null>
PARENT_ROUTINE_NAME <null>
SQL_TEXT 13e:9
SELECT COUNT(*) FROM HORSE
COUNTER 1

Chapter 11. SQL and PSQL Profiling

100

MIN_ELAPSED_TIME <null>
MAX_ELAPSED_TIME <null>
TOTAL_ELAPSED_TIME <null>
AVG_ELAPSED_TIME <null>

DESCRIPTION Profile with "DETAILED_REQUESTS"
PROFILE_ID 13
STATEMENT_ID 2149
STATEMENT_TYPE BLOCK
PACKAGE_NAME <null>
ROUTINE_NAME <null>
PARENT_STATEMENT_ID <null>
PARENT_STATEMENT_TYPE <null>
PARENT_ROUTINE_NAME <null>
SQL_TEXT 13e:b
SELECT COUNT(*) FROM HORSE
COUNTER 2
MIN_ELAPSED_TIME 165498198
MAX_ELAPSED_TIME 235246029
TOTAL_ELAPSED_TIME 400744227
AVG_ELAPSED_TIME 200372113

As you can see, if we run a profiler session without the 'DETAILED_REQUESTS' option, the view
gives us less detail. At a minimum, there are no query execution statistics, and it appears as if the
query was executed once. Let’s try to detail this data using a query to the snapshot tables.

First, let’s look at the session details without the 'DETAILED_REQUESTS' option.

SELECT
 S.PROFILE_ID,
 S.DESCRIPTION,
 R.REQUEST_ID,
 STMT.STATEMENT_ID,
 STMT.STATEMENT_TYPE,
 STMT.PACKAGE_NAME,
 STMT.ROUTINE_NAME,
 STMT.SQL_TEXT,
 R.CALLER_STATEMENT_ID,
 R.CALLER_REQUEST_ID,
 R.START_TIMESTAMP,
 R.FINISH_TIMESTAMP,
 R.TOTAL_ELAPSED_TIME
FROM PLG$PROF_SESSIONS S
JOIN PLG$PROF_STATEMENTS STMT ON STMT.PROFILE_ID = S.PROFILE_ID
JOIN PLG$PROF_REQUESTS R ON R.PROFILE_ID = S.PROFILE_ID AND R.STATEMENT_ID = STMT.STATEMENT_ID
WHERE S.PROFILE_ID = 12
 AND STMT.SQL_TEXT CONTAINING 'FROM HORSE';

PROFILE_ID 12
DESCRIPTION Profile without "DETAILED_REQUESTS"
REQUEST_ID 0
STATEMENT_ID 2149
STATEMENT_TYPE BLOCK

Chapter 11. SQL and PSQL Profiling

101

PACKAGE_NAME <null>
ROUTINE_NAME <null>
SQL_TEXT 13e:9
SELECT COUNT(*) FROM HORSE
CALLER_STATEMENT_ID <null>
CALLER_REQUEST_ID <null>
START_TIMESTAMP 2023-11-09 15:48:59.2250
FINISH_TIMESTAMP <null>
TOTAL_ELAPSED_TIME <null>

Now let’s compare it with a session with the 'DETAILED_REQUESTS' option.

SELECT
 S.PROFILE_ID,
 S.DESCRIPTION,
 R.REQUEST_ID,
 STMT.STATEMENT_ID,
 STMT.STATEMENT_TYPE,
 STMT.PACKAGE_NAME,
 STMT.ROUTINE_NAME,
 STMT.SQL_TEXT,
 R.CALLER_STATEMENT_ID,
 R.CALLER_REQUEST_ID,
 R.START_TIMESTAMP,
 R.FINISH_TIMESTAMP,
 R.TOTAL_ELAPSED_TIME
FROM PLG$PROF_SESSIONS S
JOIN PLG$PROF_STATEMENTS STMT ON STMT.PROFILE_ID = S.PROFILE_ID
JOIN PLG$PROF_REQUESTS R ON R.PROFILE_ID = S.PROFILE_ID AND R.STATEMENT_ID = STMT.STATEMENT_ID
WHERE S.PROFILE_ID = 13
 AND STMT.SQL_TEXT CONTAINING 'FROM HORSE';

PROFILE_ID 13
DESCRIPTION Profile with "DETAILED_REQUESTS"
REQUEST_ID 2474
STATEMENT_ID 2149
STATEMENT_TYPE BLOCK
PACKAGE_NAME <null>
ROUTINE_NAME <null>
SQL_TEXT 13e:b
SELECT COUNT(*) FROM HORSE
CALLER_STATEMENT_ID <null>
CALLER_REQUEST_ID <null>
START_TIMESTAMP 2023-11-09 15:49:01.6540
FINISH_TIMESTAMP 2023-11-09 15:49:02.8360
TOTAL_ELAPSED_TIME 165498198

PROFILE_ID 13
DESCRIPTION Profile with "DETAILED_REQUESTS"
REQUEST_ID 2475
STATEMENT_ID 2149
STATEMENT_TYPE BLOCK
PACKAGE_NAME <null>

Chapter 11. SQL and PSQL Profiling

102

ROUTINE_NAME <null>
SQL_TEXT 13e:b
SELECT COUNT(*) FROM HORSE
CALLER_STATEMENT_ID <null>
CALLER_REQUEST_ID <null>
START_TIMESTAMP 2023-11-09 15:49:02.8470
FINISH_TIMESTAMP 2023-11-09 15:49:04.0980
TOTAL_ELAPSED_TIME 235246029

Thus, if the profiler is run without the 'DETAILED_REQUESTS' option, all runs of the same SQL
statement will appear as a single run, in which statistics are accumulated. Directly in the
PLG$PROF_REQUESTS table, statistics are not taken into account at all without the
'DETAILED_REQUESTS' option, but they are aggregated in other tables.

SELECT
 R.PROFILE_ID,
 R.STATEMENT_ID,
 RS.CURSOR_ID,
 RS.RECORD_SOURCE_ID,
 RS.PARENT_RECORD_SOURCE_ID,
 RS."LEVEL",
 RS.ACCESS_PATH,
 RSS.OPEN_COUNTER,
 RSS.OPEN_MIN_ELAPSED_TIME,
 RSS.OPEN_MAX_ELAPSED_TIME,
 RSS.OPEN_TOTAL_ELAPSED_TIME,
 RSS.FETCH_COUNTER,
 RSS.FETCH_MIN_ELAPSED_TIME,
 RSS.FETCH_MAX_ELAPSED_TIME,
 RSS.FETCH_TOTAL_ELAPSED_TIME
FROM
 PLG$PROF_REQUESTS R
 JOIN PLG$PROF_RECORD_SOURCES RS
 ON RS.PROFILE_ID = R.PROFILE_ID AND
 RS.STATEMENT_ID = R.STATEMENT_ID
 JOIN PLG$PROF_RECORD_SOURCE_STATS RSS
 ON RSS.PROFILE_ID = R.PROFILE_ID AND
 RSS.STATEMENT_ID = R.STATEMENT_ID AND
 RSS.REQUEST_ID = R.REQUEST_ID AND
 RSS.CURSOR_ID = RS.CURSOR_ID AND
 RSS.RECORD_SOURCE_ID = RS.RECORD_SOURCE_ID
WHERE R.PROFILE_ID = 12
 AND R.STATEMENT_ID = 2149
ORDER BY RSS.REQUEST_ID, RSS.RECORD_SOURCE_ID

PROFILE_ID 12
STATEMENT_ID 2149
CURSOR_ID 1
RECORD_SOURCE_ID 1
PARENT_RECORD_SOURCE_ID <null>
LEVEL 0
ACCESS_PATH 140:f

Chapter 11. SQL and PSQL Profiling

103

Select Expression
OPEN_COUNTER 2
OPEN_MIN_ELAPSED_TIME 10266
OPEN_MAX_ELAPSED_TIME 10755
OPEN_TOTAL_ELAPSED_TIME 21022
FETCH_COUNTER 4
FETCH_MIN_ELAPSED_TIME 0
FETCH_MAX_ELAPSED_TIME 191538868
FETCH_TOTAL_ELAPSED_TIME 356557956

PROFILE_ID 12
STATEMENT_ID 2149
CURSOR_ID 1
RECORD_SOURCE_ID 2
PARENT_RECORD_SOURCE_ID 1
LEVEL 1
ACCESS_PATH 140:10
-> Aggregate
OPEN_COUNTER 2
OPEN_MIN_ELAPSED_TIME 9777
OPEN_MAX_ELAPSED_TIME 9777
OPEN_TOTAL_ELAPSED_TIME 19555
FETCH_COUNTER 4
FETCH_MIN_ELAPSED_TIME 0
FETCH_MAX_ELAPSED_TIME 191538379
FETCH_TOTAL_ELAPSED_TIME 356556489

PROFILE_ID 12
STATEMENT_ID 2149
CURSOR_ID 1
RECORD_SOURCE_ID 3
PARENT_RECORD_SOURCE_ID 2
LEVEL 2
ACCESS_PATH 140:11
-> Table "HORSE" Full Scan
OPEN_COUNTER 2
OPEN_MIN_ELAPSED_TIME 2444
OPEN_MAX_ELAPSED_TIME 3911
OPEN_TOTAL_ELAPSED_TIME 6355
FETCH_COUNTER 1039248
FETCH_MIN_ELAPSED_TIME 0
FETCH_MAX_ELAPSED_TIME 905422
FETCH_TOTAL_ELAPSED_TIME 330562264

Here you can see that all statistics are "doubled" because the request was run twice. Now let’s look
at the statistics with 'DETAILED_REQUESTS'.

SELECT
 R.PROFILE_ID,
 R.STATEMENT_ID,
 RS.CURSOR_ID,
 RS.RECORD_SOURCE_ID,
 RS.PARENT_RECORD_SOURCE_ID,
 RS."LEVEL",

Chapter 11. SQL and PSQL Profiling

104

 RS.ACCESS_PATH,
 RSS.OPEN_COUNTER,
 RSS.OPEN_MIN_ELAPSED_TIME,
 RSS.OPEN_MAX_ELAPSED_TIME,
 RSS.OPEN_TOTAL_ELAPSED_TIME,
 RSS.FETCH_COUNTER,
 RSS.FETCH_MIN_ELAPSED_TIME,
 RSS.FETCH_MAX_ELAPSED_TIME,
 RSS.FETCH_TOTAL_ELAPSED_TIME
FROM
 PLG$PROF_REQUESTS R
 JOIN PLG$PROF_RECORD_SOURCES RS
 ON RS.PROFILE_ID = R.PROFILE_ID AND
 RS.STATEMENT_ID = R.STATEMENT_ID
 JOIN PLG$PROF_RECORD_SOURCE_STATS RSS
 ON RSS.PROFILE_ID = R.PROFILE_ID AND
 RSS.STATEMENT_ID = R.STATEMENT_ID AND
 RSS.REQUEST_ID = R.REQUEST_ID AND
 RSS.CURSOR_ID = RS.CURSOR_ID AND
 RSS.RECORD_SOURCE_ID = RS.RECORD_SOURCE_ID
WHERE R.PROFILE_ID = 13
 AND R.STATEMENT_ID = 2149
ORDER BY RSS.REQUEST_ID, RSS.RECORD_SOURCE_ID

PROFILE_ID 13
STATEMENT_ID 2149
CURSOR_ID 1
RECORD_SOURCE_ID 1
PARENT_RECORD_SOURCE_ID <null>
LEVEL 0
ACCESS_PATH 140:14
Select Expression
OPEN_COUNTER 1
OPEN_MIN_ELAPSED_TIME 20044
OPEN_MAX_ELAPSED_TIME 20044
OPEN_TOTAL_ELAPSED_TIME 20044
FETCH_COUNTER 2
FETCH_MIN_ELAPSED_TIME 0
FETCH_MAX_ELAPSED_TIME 165438065
FETCH_TOTAL_ELAPSED_TIME 165438065

PROFILE_ID 13
STATEMENT_ID 2149
CURSOR_ID 1
RECORD_SOURCE_ID 2
PARENT_RECORD_SOURCE_ID 1
LEVEL 1
ACCESS_PATH 140:15
-> Aggregate
OPEN_COUNTER 1
OPEN_MIN_ELAPSED_TIME 19066
OPEN_MAX_ELAPSED_TIME 19066
OPEN_TOTAL_ELAPSED_TIME 19066
FETCH_COUNTER 2
FETCH_MIN_ELAPSED_TIME 0

Chapter 11. SQL and PSQL Profiling

105

FETCH_MAX_ELAPSED_TIME 165437576
FETCH_TOTAL_ELAPSED_TIME 165437576

PROFILE_ID 13
STATEMENT_ID 2149
CURSOR_ID 1
RECORD_SOURCE_ID 3
PARENT_RECORD_SOURCE_ID 2
LEVEL 2
ACCESS_PATH 140:16
-> Table "HORSE" Full Scan
OPEN_COUNTER 1
OPEN_MIN_ELAPSED_TIME 2444
OPEN_MAX_ELAPSED_TIME 2444
OPEN_TOTAL_ELAPSED_TIME 2444
FETCH_COUNTER 519624
FETCH_MIN_ELAPSED_TIME 0
FETCH_MAX_ELAPSED_TIME 892222
FETCH_TOTAL_ELAPSED_TIME 161990420

PROFILE_ID 13
STATEMENT_ID 2149
CURSOR_ID 1
RECORD_SOURCE_ID 1
PARENT_RECORD_SOURCE_ID <null>
LEVEL 0
ACCESS_PATH 140:14
Select Expression
OPEN_COUNTER 1
OPEN_MIN_ELAPSED_TIME 12711
OPEN_MAX_ELAPSED_TIME 12711
OPEN_TOTAL_ELAPSED_TIME 12711
FETCH_COUNTER 2
FETCH_MIN_ELAPSED_TIME 488
FETCH_MAX_ELAPSED_TIME 235217674
FETCH_TOTAL_ELAPSED_TIME 235218163

PROFILE_ID 13
STATEMENT_ID 2149
CURSOR_ID 1
RECORD_SOURCE_ID 2
PARENT_RECORD_SOURCE_ID 1
LEVEL 1
ACCESS_PATH 140:15
-> Aggregate
OPEN_COUNTER 1
OPEN_MIN_ELAPSED_TIME 11244
OPEN_MAX_ELAPSED_TIME 11244
OPEN_TOTAL_ELAPSED_TIME 11244
FETCH_COUNTER 2
FETCH_MIN_ELAPSED_TIME 0
FETCH_MAX_ELAPSED_TIME 235217674
FETCH_TOTAL_ELAPSED_TIME 235217674

PROFILE_ID 13
STATEMENT_ID 2149

Chapter 11. SQL and PSQL Profiling

106

CURSOR_ID 1
RECORD_SOURCE_ID 3
PARENT_RECORD_SOURCE_ID 2
LEVEL 2
ACCESS_PATH 140:16
-> Table "HORSE" Full Scan
OPEN_COUNTER 1
OPEN_MIN_ELAPSED_TIME 2444
OPEN_MAX_ELAPSED_TIME 2444
OPEN_TOTAL_ELAPSED_TIME 2444
FETCH_COUNTER 519624
FETCH_MIN_ELAPSED_TIME 0
FETCH_MAX_ELAPSED_TIME 675155
FETCH_TOTAL_ELAPSED_TIME 196082602

For a session with the 'DETAILED_REQUESTS' option, we see that statistics are collected separately
for each SQL statement run.

The 'DETAILED_REQUESTS' option creates one record in the PLG$PROF_REQUESTS
table not only for each top-level SQL query, but also for each stored procedure or
function call. Thus, if you have a PSQL function called on some field in the SELECT
clause, then PLG$PROF_REQUESTS will have as many records with the call to this
function as there were records snapped. This can significantly slow down the reset
of profiling statistics. Therefore, you should not use the 'DETAILED_REQUESTS'
option for any profiling session. To find "bottlenecks" in a particular query, it will
be sufficient to leave the PLUGIN_OPTIONS parameter at the default value.

11.14.2. Running the profiler in a remote connection

To start a profiling session on a remote connection, you need to know the ID of that connection. You
can do this using the MON$ATTACHMENTS monitoring table or by running a query with the
CURRENT_CONNECTION context variable in the remote session, and set this ID as the value of the
ATTACHMENT_ID parameter of the RDB$PROFILER.START_SESSION function.

Requesting connection ID in session 1

select current_connection from rdb$database;

 CURRENT_CONNECTION
=====================
 29

Starting a profiling session on a remote computer in session 2

SELECT RDB$PROFILER.START_SESSION('Profile with "DETAILED_REQUESTS"',
 NULL, 29, NULL, 'DETAILED_REQUESTS')
FROM RDB$DATABASE;

Chapter 11. SQL and PSQL Profiling

107

The request or requests that we profile in session 1

select current_connection from rdb$database;

Stopping remote profiling in session 2

EXECUTE PROCEDURE RDB$PROFILER.FINISH_SESSION(TRUE, 29);

COMMIT;

Now we can see the profiling result in any connection.

SELECT
 S.PROFILE_ID,
 S.ATTACHMENT_ID,
 S.START_TIMESTAMP AS SESSION_START,
 S.FINISH_TIMESTAMP AS SESSION_FINISH,
 R.REQUEST_ID,
 STMT.STATEMENT_ID,
 STMT.STATEMENT_TYPE,
 STMT.PACKAGE_NAME,
 STMT.ROUTINE_NAME,
 STMT.SQL_TEXT,
 R.CALLER_STATEMENT_ID,
 R.CALLER_REQUEST_ID,
 R.START_TIMESTAMP,
 R.FINISH_TIMESTAMP,
 R.TOTAL_ELAPSED_TIME
FROM PLG$PROF_SESSIONS S
JOIN PLG$PROF_STATEMENTS STMT ON STMT.PROFILE_ID = S.PROFILE_ID
JOIN PLG$PROF_REQUESTS R ON R.PROFILE_ID = S.PROFILE_ID AND R.STATEMENT_ID = STMT.STATEMENT_ID
WHERE S.ATTACHMENT_ID = 29
 AND STMT.SQL_TEXT CONTAINING 'FROM HORSE';

PROFILE_ID 14
ATTACHMENT_ID 29
SESSION_START 2023-11-09 16:56:39.1640
SESSION_FINISH 2023-11-09 16:57:41.0010
REQUEST_ID 3506
STATEMENT_ID 3506
STATEMENT_TYPE BLOCK
PACKAGE_NAME <null>
ROUTINE_NAME <null>
SQL_TEXT 13e:1
SELECT COUNT(*) FROM HORSE
CALLER_STATEMENT_ID <null>
CALLER_REQUEST_ID <null>
START_TIMESTAMP 2023-11-09 16:57:29.1010
FINISH_TIMESTAMP 2023-11-09 16:57:30.4800
TOTAL_ELAPSED_TIME 82622

Chapter 11. SQL and PSQL Profiling

108

11.15. Examples of using the profiler to find
"bottlenecks"
Now that you’ve become familiar with the different modes for launching a profiling session, it’s
time to show how the profiler can help you find “bottlenecks” in your SQL queries and PSQL
modules.

Let’s say using tracing you found such a slow query:

SELECT
 CODE_HORSE,
 BYDATE,
 HORSENAME,
 FRISK,
 OWNERNAME
FROM SP_SOME_STAT(58, '2.00,0', 2020, 2023)

We need to understand the reasons for the slowdown of the query and fix them. The first thing to
do is eliminate the time it takes to fetch records for the client. To do this, you can simply wrap this
query in another query that will simply calculate the number of records. Thus, we are guaranteed
to read all records, but at the same time we need to send only 1 record to the client.

SELECT COUNT(*)
FROM (
 SELECT
 CODE_HORSE,
 BYDATE,
 HORSENAME,
 FRISK,
 OWNERNAME
 FROM SP_SOME_STAT(58, '2.00,0', 2020, 2023)
);

The execution statistics for this SQL query look like this:

 COUNT
=====================
 240

Current memory = 554444768
Delta memory = 17584
Max memory = 554469104
Elapsed time = 2.424 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 124985

Chapter 11. SQL and PSQL Profiling

109

In this case, the list of fields could simply be replaced with COUNT(*) without
wrapping the query in a derived table, however, in the general case, the SELECT
clause can contain various expressions, including subqueries, so it is better to do
as I showed .

Now you can run the query in the profiler:

SELECT RDB$PROFILER.START_SESSION('Profile procedure SP_SOME_STAT')
FROM RDB$DATABASE;

SELECT COUNT(*)
FROM (
 SELECT
 CODE_HORSE,
 BYDATE,
 HORSENAME,
 FRISK,
 OWNERNAME
 FROM SP_SOME_STAT(58, '2.00,0', 2020, 2023)
);

EXECUTE PROCEDURE RDB$PROFILER.FINISH_SESSION;

COMMIT;

First, let’s look at the PSQL statistics:

SELECT
 ROUTINE_NAME,
 LINE_NUM,
 COLUMN_NUM,
 COUNTER,
 TOTAL_ELAPSED_TIME,
 AVG_ELAPSED_TIME
FROM PLG$PROF_PSQL_STATS_VIEW STAT
WHERE STAT.PROFILE_ID = 5;

ROUTINE_NAME LINE_NUM COLUMN_NUM COUNTER TOTAL_ELAPSED_TIME AVG_ELAPSED_TIME
==================== ============ ============ =============== ===================== =====================
SF_RACETIME_TO_SEC 22 5 67801 1582095600 23334
SF_RACETIME_TO_SEC 18 3 67801 90068700 1328
SF_RACETIME_TO_SEC 27 5 67801 53903300 795
SF_RACETIME_TO_SEC 31 5 67801 49835400 735
SP_SOME_STAT 16 3 1 43414600 43414600
SF_RACETIME_TO_SEC 25 5 67801 42623200 628
SF_RACETIME_TO_SEC 34 5 67801 37339200 550
SF_RACETIME_TO_SEC 14 3 67801 35822000 528
SF_RACETIME_TO_SEC 29 5 67801 34874400 514
SF_RACETIME_TO_SEC 32 5 67801 24093200 355
SF_RACETIME_TO_SEC 15 3 67801 23832900 351
SF_RACETIME_TO_SEC 6 1 67801 15985600 235
SF_RACETIME_TO_SEC 26 5 67801 15625500 230

Chapter 11. SQL and PSQL Profiling

110

SP_SOME_STAT 38 5 240 3454800 14395
SF_SEC_TO_RACETIME 20 3 240 549900 2291
SF_SEC_TO_RACETIME 31 3 240 304100 1267
SF_SEC_TO_RACETIME 21 3 240 294200 1225
SF_SEC_TO_RACETIME 16 3 240 293900 1224
SF_RACETIME_TO_SEC 7 1 67801 202400 2
SF_RACETIME_TO_SEC 8 1 67801 186100 2

ROUTINE_NAME LINE_NUM COLUMN_NUM COUNTER TOTAL_ELAPSED_TIME AVG_ELAPSED_TIME
==================== ============ ============ =============== ===================== =====================
SF_RACETIME_TO_SEC 20 3 67801 168400 2
SF_RACETIME_TO_SEC 9 1 67801 156700 2
SF_RACETIME_TO_SEC 12 1 67801 153900 2
SF_RACETIME_TO_SEC 10 1 67801 153300 2
SF_SEC_TO_RACETIME 18 3 240 148600 619
SF_RACETIME_TO_SEC 16 3 67801 127100 1
SF_SEC_TO_RACETIME 17 3 240 92100 383
SF_SEC_TO_RACETIME 8 1 240 89200 371
SF_RACETIME_TO_SEC 11 1 67801 69500 1
SF_SEC_TO_RACETIME 28 3 240 16600 69
SF_RACETIME_TO_SEC 5 1 67801 7800 0
SF_SEC_TO_RACETIME 11 1 240 2000 8
SF_SEC_TO_RACETIME 10 1 240 1800 7
SF_SEC_TO_RACETIME 9 1 240 1200 5
SP_SOME_STAT 37 5 240 500 2
SF_SEC_TO_RACETIME 13 3 240 500 2
SF_SEC_TO_RACETIME 7 1 240 400 1

From these statistics it is clear that the leader in total execution time is the operator located in line
22 of the SF_RACETIME_TO_SEC function. The average execution time of this statement is low, but it is
called 67801 times. There are two options for optimization: either optimize the SF_RACETIME_TO_SEC
function itself (operator on line 22), or reduce the number of calls to this function.

Let’s look at the contents of the SP_SOME_STAT procedure.

CREATE OR ALTER PROCEDURE SP_SOME_STAT (
 A_CODE_BREED INTEGER,
 A_MIN_FRISK VARCHAR(9),
 A_YEAR_BEGIN SMALLINT,
 A_YEAR_END SMALLINT
)
RETURNS (
 CODE_HORSE BIGINT,
 BYDATE DATE,
 HORSENAME VARCHAR(50),
 FRISK VARCHAR(9),
 OWNERNAME VARCHAR(120)
)
AS
BEGIN
 FOR
 SELECT
 TL.CODE_HORSE,
 TRIAL.BYDATE,
 H.NAME,
 SF_SEC_TO_RACETIME(TL.TIME_PASSED_SEC) AS FRISK

Chapter 11. SQL and PSQL Profiling

111

 FROM
 TRIAL_LINE TL
 JOIN TRIAL ON TRIAL.CODE_TRIAL = TL.CODE_TRIAL
 JOIN HORSE H ON H.CODE_HORSE = TL.CODE_HORSE
 WHERE TL.TIME_PASSED_SEC <= SF_RACETIME_TO_SEC(:A_MIN_FRISK)
 AND TRIAL.CODE_TRIALTYPE = 2
 AND H.CODE_BREED = :A_CODE_BREED
 AND EXTRACT(YEAR FROM TRIAL.BYDATE) BETWEEN :A_YEAR_BEGIN AND :A_YEAR_END
 INTO
 CODE_HORSE,
 BYDATE,
 HORSENAME,
 FRISK
 DO
 BEGIN
 OWNERNAME = NULL;
 SELECT
 FARM.NAME
 FROM
 (
 SELECT
 R.CODE_FARM
 FROM REGISTRATION R
 WHERE R.CODE_HORSE = :CODE_HORSE
 AND R.CODE_REGTYPE = 6
 AND R.BYDATE <= :BYDATE
 ORDER BY R.BYDATE DESC
 FETCH FIRST ROW ONLY
) OWN
 JOIN FARM ON FARM.CODE_FARM = OWN.CODE_FARM
 INTO OWNERNAME;

 SUSPEND;
 END
END

The function SF_RACETIME_TO_SEC calls on line number 21:

 WHERE TL.TIME_PASSED_SEC <= SF_RACETIME_TO_SEC(:A_MIN_FRISK)

Obviously this condition will be checked multiple times for each record. Repeated execution of the
SF_RACETIME_TO_SEC function contributes significantly to the overall execution time. If you look at
the function call itself, you will notice that the function arguments do not depend on the data
source, that is, the function value is invariant. This means that we can move its calculation outside
the query. So we can rewrite our procedure like this:

CREATE OR ALTER PROCEDURE SP_SOME_STAT (
 A_CODE_BREED INTEGER,
 A_MIN_FRISK VARCHAR(9),
 A_YEAR_BEGIN SMALLINT,
 A_YEAR_END SMALLINT
)

Chapter 11. SQL and PSQL Profiling

112

RETURNS (
 CODE_HORSE BIGINT,
 BYDATE DATE,
 HORSENAME VARCHAR(50),
 FRISK VARCHAR(9),
 OWNERNAME VARCHAR(120)
)
AS
 DECLARE TIME_PASSED NUMERIC(18, 3);
BEGIN
 TIME_PASSED = SF_RACETIME_TO_SEC(:A_MIN_FRISK);
 FOR
 SELECT
 TL.CODE_HORSE,
 TRIAL.BYDATE,
 H.NAME,
 SF_SEC_TO_RACETIME(TL.TIME_PASSED_SEC) AS FRISK
 FROM
 TRIAL_LINE TL
 JOIN TRIAL ON TRIAL.CODE_TRIAL = TL.CODE_TRIAL
 JOIN HORSE H ON H.CODE_HORSE = TL.CODE_HORSE
 WHERE TL.TIME_PASSED_SEC <= :TIME_PASSED
 AND TRIAL.CODE_TRIALTYPE = 2
 AND H.CODE_BREED = :A_CODE_BREED
 AND EXTRACT(YEAR FROM TRIAL.BYDATE) BETWEEN :A_YEAR_BEGIN AND :A_YEAR_END
 INTO
 CODE_HORSE,
 BYDATE,
 HORSENAME,
 FRISK
 DO
 BEGIN
 OWNERNAME = NULL;
 SELECT
 FARM.NAME
 FROM
 (
 SELECT
 R.CODE_FARM
 FROM REGISTRATION R
 WHERE R.CODE_HORSE = :CODE_HORSE
 AND R.CODE_REGTYPE = 6
 AND R.BYDATE <= :BYDATE
 ORDER BY R.BYDATE DESC
 FETCH FIRST ROW ONLY
) OWN
 JOIN FARM ON FARM.CODE_FARM = OWN.CODE_FARM
 INTO OWNERNAME;

 SUSPEND;
 END
END

Let’s try to execute an SQL query after changing the SP_SOME_STAT procedure:

Chapter 11. SQL and PSQL Profiling

113

SELECT COUNT(*)
FROM (
 SELECT
 CODE_HORSE,
 BYDATE,
 HORSENAME,
 FRISK,
 OWNERNAME
 FROM SP_SOME_STAT(58, '2.00,0', 2020, 2023)
);

 COUNT
=====================
 240

Current memory = 555293472
Delta memory = 288
Max memory = 555359872
Elapsed time = 0.134 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 124992

2.424 sec vs 0.134 sec - the acceleration is significant. Is it possible to do better? Let’s run the
profiling session again. The new session ID is 6.

Let’s look at the PSQL statistics:

SELECT
 ROUTINE_NAME,
 LINE_NUM,
 COLUMN_NUM,
 COUNTER,
 TOTAL_ELAPSED_TIME,
 AVG_ELAPSED_TIME
FROM PLG$PROF_PSQL_STATS_VIEW STAT
WHERE STAT.PROFILE_ID = 6;

ROUTINE_NAME LINE_NUM COLUMN_NUM COUNTER TOTAL_ELAPSED_TIME AVG_ELAPSED_TIME
==================== ============ ============ =============== ===================== =====================
SP_SOME_STAT 18 3 1 10955200 10955200
SP_SOME_STAT 40 5 240 3985800 16607
SF_SEC_TO_RACETIME 20 3 240 508100 2117
SF_SEC_TO_RACETIME 31 3 240 352700 1469
SF_SEC_TO_RACETIME 21 3 240 262200 1092
SF_SEC_TO_RACETIME 16 3 240 257300 1072
SF_SEC_TO_RACETIME 18 3 240 156400 651
SP_SOME_STAT 17 3 1 141500 141500
SF_SEC_TO_RACETIME 8 1 240 125700 523
SF_SEC_TO_RACETIME 17 3 240 94100 392

Chapter 11. SQL and PSQL Profiling

114

SF_RACETIME_TO_SEC 22 5 1 83400 83400
SF_SEC_TO_RACETIME 28 3 240 38700 161
SF_SEC_TO_RACETIME 10 1 240 20800 86
SF_SEC_TO_RACETIME 11 1 240 20200 84
SF_SEC_TO_RACETIME 9 1 240 16200 67
SF_RACETIME_TO_SEC 6 1 1 7100 7100
SF_SEC_TO_RACETIME 7 1 240 6600 27
SF_RACETIME_TO_SEC 27 5 1 5800 5800
SF_RACETIME_TO_SEC 18 3 1 5700 5700
SF_SEC_TO_RACETIME 13 3 240 5700 23

ROUTINE_NAME LINE_NUM COLUMN_NUM COUNTER TOTAL_ELAPSED_TIME AVG_ELAPSED_TIME
==================== ============ ============ =============== ===================== =====================
SF_RACETIME_TO_SEC 32 5 1 4600 4600
SP_SOME_STAT 39 5 240 4400 18
SF_RACETIME_TO_SEC 14 3 1 4300 4300
SF_RACETIME_TO_SEC 34 5 1 3500 3500
SF_RACETIME_TO_SEC 25 5 1 3300 3300
SF_RACETIME_TO_SEC 31 5 1 2900 2900
SF_RACETIME_TO_SEC 29 5 1 2800 2800
SF_RACETIME_TO_SEC 15 3 1 1600 1600
SF_RACETIME_TO_SEC 26 5 1 1000 1000
SF_RACETIME_TO_SEC 7 1 1 800 800
SF_RACETIME_TO_SEC 20 3 1 800 800
SF_RACETIME_TO_SEC 5 1 1 400 400
SF_RACETIME_TO_SEC 8 1 1 400 400
SF_RACETIME_TO_SEC 10 1 1 400 400
SF_RACETIME_TO_SEC 11 1 1 400 400
SF_RACETIME_TO_SEC 12 1 1 400 400
SF_RACETIME_TO_SEC 16 3 1 400 400
SP_SOME_STAT 15 3 1 300 300
SF_RACETIME_TO_SEC 9 1 1 300 300

Line 18 in the SP_SOME_STAT procedure takes the longest time - this is the top-level cursor itself, but
this cursor is opened once. It is important to note here that the total time for retrieving all records
from the cursor is affected by the operators executed inside the statement block for processing each
cursor record, that is

 FOR
 SELECT
...
 DO
 BEGIN
 -- everything that is done here affects the time it takes to retrieve all records from the
cursor
 ...
 END

Let’s look at what makes the most significant contribution within this block. This is line number 40
of the SP_SOME_STAT procedure, which is called 240 times. Here is the content of the statement that is
called:

 SELECT
 FARM.NAME
 FROM

Chapter 11. SQL and PSQL Profiling

115

 (
 SELECT
 R.CODE_FARM
 FROM REGISTRATION R
 WHERE R.CODE_HORSE = :CODE_HORSE
 AND R.CODE_REGTYPE = 6
 AND R.BYDATE <= :BYDATE
 ORDER BY R.BYDATE DESC
 FETCH FIRST ROW ONLY
) OWN
 JOIN FARM ON FARM.CODE_FARM = OWN.CODE_FARM
 INTO OWNERNAME;

Now let’s look at the plan of the procedure SP_SOME_STAT:

SELECT CS.MON$EXPLAINED_PLAN
FROM MON$COMPILED_STATEMENTS CS
JOIN PLG$PROF_STATEMENTS S ON S.STATEMENT_ID = CS.MON$COMPILED_STATEMENT_ID
WHERE CS.MON$OBJECT_NAME = 'SP_SOME_STAT'
 AND S.PROFILE_ID = 6;

==
MON$EXPLAINED_PLAN:

Select Expression (line 40, column 5)
 -> Singularity Check
 -> Nested Loop Join (inner)
 -> First N Records
 -> Refetch
 -> Sort (record length: 28, key length: 8)
 -> Filter
 -> Table "REGISTRATION" as "OWN R" Access By ID
 -> Bitmap
 -> Index "REGISTRATION_IDX_HORSE_REGTYPE" Range Scan (full match)
 -> Filter
 -> Table "FARM" Access By ID
 -> Bitmap
 -> Index "PK_FARM" Unique Scan
Select Expression (line 18, column 3)
 -> Nested Loop Join (inner)
 -> Filter
 -> Table "TRIAL" Access By ID
 -> Bitmap And
 -> Bitmap
 -> Index "IDX_TRIAL_BYYEAR" Range Scan (lower bound: 1/1, upper bound: 1/1)
 -> Bitmap
 -> Index "FK_TRIAL_TRIALTYPE" Range Scan (full match)
 -> Filter
 -> Table "TRIAL_LINE" as "TL" Access By ID
 -> Bitmap
 -> Index "FK_TRIAL_LINE_TRIAL" Range Scan (full match)
 -> Filter
 -> Table "HORSE" as "H" Access By ID
 -> Bitmap
 -> Index "PK_HORSE" Unique Scan

Chapter 11. SQL and PSQL Profiling

116

==

So the inner query plan is:

Select Expression (line 40, column 5)
 -> Singularity Check
 -> Nested Loop Join (inner)
 -> First N Records
 -> Refetch
 -> Sort (record length: 28, key length: 8)
 -> Filter
 -> Table "REGISTRATION" as "OWN R" Access By ID
 -> Bitmap
 -> Index "REGISTRATION_IDX_HORSE_REGTYPE" Range Scan (full match)
 -> Filter
 -> Table "FARM" Access By ID
 -> Bitmap
 -> Index "PK_FARM" Unique Scan

As you can see, the plan is not the most effective. An index is used to filter the data, and then sort
the resulting keys and Refetch. Let’s look at the REGISTRATION_IDX_HORSE_REGTYPE index:

SQL> SHOW INDEX REGISTRATION_IDX_HORSE_REGTYPE;
REGISTRATION_IDX_HORSE_REGTYPE INDEX ON REGISTRATION(CODE_HORSE, CODE_REGTYPE)

Only the CODE_HORSE and CODE_REGTYPE fields are included in the index, so index navigation cannot be
used to determine the last record on a date. Let’s try to create another composite index:

CREATE DESCENDING INDEX IDX_REG_HORSE_OWNER ON REGISTRATION(CODE_HORSE, CODE_REGTYPE, BYDATE);

Let’s run the query again:

SELECT COUNT(*)
FROM (
 SELECT
 CODE_HORSE,
 BYDATE,
 HORSENAME,
 FRISK,
 OWNERNAME
 FROM SP_SOME_STAT(58, '2.00,0', 2020, 2023)
);

 COUNT
=====================
 240

Current memory = 554429808

Chapter 11. SQL and PSQL Profiling

117

Delta memory = 288
Max memory = 554462400
Elapsed time = 0.125 sec
Buffers = 32768
Reads = 0
Writes = 0
Fetches = 124165

Just in case, let’s check that the procedure plan has changed.

SELECT CS.MON$EXPLAINED_PLAN
FROM MON$COMPILED_STATEMENTS CS
WHERE CS.MON$OBJECT_NAME = 'SP_SOME_STAT'
ORDER BY CS.MON$COMPILED_STATEMENT_ID DESC
FETCH FIRST ROW ONLY;

==
MON$EXPLAINED_PLAN:

Select Expression (line 38, column 5)
 -> Singularity Check
 -> Nested Loop Join (inner)
 -> First N Records
 -> Filter
 -> Table "REGISTRATION" as "OWN R" Access By ID
 -> Index "IDX_REG_HORSE_OWNER" Range Scan (lower bound: 3/3, upper bound: 2/3)
 -> Filter
 -> Table "FARM" Access By ID
 -> Bitmap
 -> Index "PK_FARM" Unique Scan
Select Expression (line 16, column 3)
 -> Nested Loop Join (inner)
 -> Filter
 -> Table "TRIAL" Access By ID
 -> Bitmap And
 -> Bitmap
 -> Index "IDX_TRIAL_BYYEAR" Range Scan (lower bound: 1/1, upper bound: 1/1)
 -> Bitmap
 -> Index "FK_TRIAL_TRIALTYPE" Range Scan (full match)
 -> Filter
 -> Table "TRIAL_LINE" as "TL" Access By ID
 -> Bitmap
 -> Index "FK_TRIAL_LINE_TRIAL" Range Scan (full match)
 -> Filter
 -> Table "HORSE" as "H" Access By ID
 -> Bitmap
 -> Index "PK_HORSE" Unique Scan
==

Yes, the plan got better. Navigation by index IDX_REG_HORSE_OWNER is now used with Range Scan. If
we compare the execution time, we get 0.134 seconds vs 0.125 seconds and 124992 vs 124165
fetches. The improvements are very minor. In principle, relative to the original version, our
procedure has already become 19 times faster, so optimization can be completed.

Chapter 11. SQL and PSQL Profiling

118

Chapter 12. Conclusion
This concludes the review of the new features of Firebird 5.0. The Firebird developers have done a
great job, for which we are very grateful. Migrate to Firebird 5.0 and get all the features described
above.

f you discover any typos or errors in this book, please report them to Alexey Kovyazin at ak@ib-
aid.com.

Chapter 12. Conclusion

119

mailto:ak@ib-aid.com
mailto:ak@ib-aid.com

	Detailed New Features Of Firebird 5
	Table of Contents
	Preface: Firebird 5.0 - A Game-Changing Release in the World of Relational Databases
	SQL Query Optimization: Faster Than Ever
	Scalability: Growing with Your Data
	Parallel Execution: Harnessing the Power of Modern Hardware
	Prepared Statement Cache
	Improved Compression of Records
	SQL Query Profiling: Shining a Light on Performance Of Complex Stored Procedures
	Wrapping Up and More Materials
	Practical Migration Guide To Firebird 5

	And, let’s start!

	Chapter 1. New ODS and upgrade without backup-restore
	Chapter 2. Improving the data compression algorithm
	Chapter 3. Cache of prepared (compiled) statements
	3.1. A little theory

	Chapter 4. Support for bidirectional cursors in the network protocol
	Chapter 5. Tracing the COMPILE event
	Chapter 6. Per-table statistics in isql
	Chapter 7. Parallel execution of maintenance tasks
	7.1. Parallel execution of tasks in the Firebird kernel
	7.1.1. Practical recommendations for parameters
	7.1.2. Multi-threaded index creation or rebuild

	7.2. Parallel execution of maintenance tasks by Firebird tools
	7.2.1. Parallelism when performing backups using the gbak
	7.2.2. Parallelism when performing restore using the gbak
	7.2.3. Parallel manual sweep using the gfix tool
	7.2.4. Parallel icu update using the gfix utility

	Chapter 8. Improvements in Optimizer
	8.1. Cost estimation of HASH vs NESTED LOOP JOIN
	8.2. Cost estimation of HASH vs MERGE JOIN
	8.3. Transforming OUTER JOIN into INNER JOIN
	8.4. Converting subqueries to ANY/SOME/IN/EXISTS in semi-join
	8.5. Preliminary evaluation of invariant predicates
	8.6. Faster IN with list of constants
	8.7. Optimizer strategy ALL ROWS vs FIRST ROWS
	8.8. Improved plan output
	8.9. How to get stored procedure plans

	Chapter 9. New features in SQL language
	9.1. Support for WHEN NOT MATCHED BY SOURCE clause in MERGE statement
	9.1.1. WHEN MATCHED
	9.1.2. WHEN NOT MATCHED [BY TARGET]
	9.1.3. WHEN NOT MATCHED BY SOURCE
	9.1.4. Example of using MERGE with clause WHEN NOT MATCHED BY SOURCE

	9.2. Clause SKIP LOCKED
	9.3. Support for returning multiple records by operators with clause RETURNING
	9.4. Partial indices
	9.5. Functions UNICODE_CHAR and UNICODE_VAL
	9.6. Query expressions in parentheses
	9.7. Improved Literals
	9.7.1. Full syntax of string literals
	9.7.2. Complete syntax for binary literals

	9.8. Improved predicate IN
	9.9. Package RDB$BLOB_UTIL
	9.9.1. Using the function RDB$BLOB_UTIL.NEW_BLOB
	9.9.2. Reading BLOBs in chunks

	Chapter 10. Why SKIP LOCKED was developed?
	10.1. Preparing the Database
	10.2. Script simulating a job queue
	10.3. Clause SKIP LOCKED
	10.4. Job queue without conflicts
	10.5. Next steps
	10.6. Summary

	Chapter 11. SQL and PSQL Profiling
	11.1. Starting a Profiling Session
	11.2. Pausing a Profiling Session
	11.3. Resuming a Profiling Session
	11.4. Finishing a Profiling Session
	11.5. Canceling a Profiling Session
	11.6. Resuming a Profiling Session
	11.7. Finishing a Profiling Session
	11.8. Canceling a Profiling Session
	11.9. Discarding Profiling Sessions
	11.10. Flushing Profiling Session Statistics to Snapshot Tables
	11.11. Setting the Statistics Flush Interval
	11.12. Snapshot Tables
	11.12.1. Table PLG$PROF_SESSIONS
	11.12.2. Table PLG$PROF_STATEMENTS
	11.12.3. Table PLG$PROF_REQUESTS
	11.12.4. Table PLG$PROF_CURSORS
	11.12.5. Table PLG$PROF_RECORD_SOURCES
	11.12.6. Table PLG$PROF_RECORD_SOURCE_STATS
	11.12.7. Table PLG$PROF_PSQL_STATS

	11.13. Auxiliary Views
	11.14. Profiler Launch Modes
	11.14.1. Option DETAILED_REQUESTS
	11.14.2. Running the profiler in a remote connection

	11.15. Examples of using the profiler to find "bottlenecks"

	Chapter 12. Conclusion

